基于PCA-SOA-ELM的空调系统负荷预测

闫秀英, 李忆言, 杜伊帆, 闫秀联

分布式能源 ›› 2022, Vol. 7 ›› Issue (2) : 56-63.

PDF(1609 KB)
PDF(1609 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (2) : 56-63. DOI: 10.16513/j.2096-2185.DE.2207208
应用技术

基于PCA-SOA-ELM的空调系统负荷预测

作者信息 +

Load Prediction of Air Conditioning System Based on PCA-SOA-ELM

Author information +
文章历史 +

本文亮点

Aiming at the problems of low prediction accuracy and long prediction time in the load forecasting method of air conditioning system participating in demand response, an air conditioning load forecasting model based on extreme learning machine (ELM) optimized by principal component analysis (PCA) and seagull optimization algorithm (SOA) is proposed. The main characteristics affecting the load data of air conditioning system are extracted through PCA, the ELM load forecasting model of air conditioning system is established, and the model parameters are iteratively optimized by SOA. In order to verify the effectiveness of the algorithm, taking the air conditioning load data of an office building in Xi'an as an example, the experimental results show that six principal components containing 98.00% of the original information are obtained after PCA feature extraction. The prediction results of SOA-ELM model are basically consistent with the actual values, with root mean square error of 0.013 7, average absolute percentage error of 0.839 2%, determination coefficient of 0.991 0 and training time of 3.482 s. Compared with the other three comparison models, the performance of the model is better. It is proved that the model has strong generalization performance and high prediction accuracy, and can effectively predict the load change in the demand response period of the air conditioning system.

引用本文

导出引用
闫秀英, 李忆言, 杜伊帆, . 基于PCA-SOA-ELM的空调系统负荷预测[J]. 分布式能源. 2022, 7(2): 56-63 https://doi.org/10.16513/j.2096-2185.DE.2207208
Xiuying YAN, Yiyan LI, Yifan DU, et al. Load Prediction of Air Conditioning System Based on PCA-SOA-ELM[J]. Distributed Energy Resources. 2022, 7(2): 56-63 https://doi.org/10.16513/j.2096-2185.DE.2207208
中图分类号: TK01; TP302.7   

参考文献

[1]
中电联行业发展与环境资源部. 中国电力行业年度发展报告2020[EB/OL]. 2020-06-15.
[2]
沫霖. 夏季空调负荷为什么值得关注[N]. 中国能源报. 2016-08-29(004).
[3]
洪鹏广智. 国内大型公共建筑空调系统运行管理现状调查研究[J]. 建筑节能2020, 48(10): 8-13.
SUN Hongpeng, CHEN Chen, ZHANG Guangzhi. Investigation and research on the operation and management of air conditioning systems in large public buildings in China[J]. Building Energy Conservation, 2020, 48(10): 8-13.
[4]
效效庆龙,等. 蓄能空调需求响应时段负荷和储释能时长预测[J]. 建筑节能(中英文), 2021, 49(9): 95-104.
REN Xiaoxiao, MENG Qinglong, LI Yang, et al. Prediction of load and energy storage and release duration during demand response period of energy storage air conditioners[J]. Building Energy Conservation (Chinese and English), 2021, 49(9): 95-104.
[5]
祖兵国强,等. 基于多元非线性回归法的商场空调负荷预测[J]. 暖通空调2018, 48(3): 120-125.
ZHOU Xuan, FAN Zubing, LIU Guoqiang, et al. Prediction of air-conditioning load in shopping malls based on multivariate nonlinear regression method[J]. Journal of HV&AC, 2018, 48(3): 120-125.
[6]
忠娇吉礼. 基于相似工况组合权重的空调能耗预测方法[J]. 建筑热能通风空调2017, 36(12): 13-18.
MA Zhongjiao, ZHANG Jili. Air conditioning energy consumption prediction method based on the combined weight of similar working conditions[J]. Building Thermal Energy Ventilation and Air Conditioning, 2017, 36(12): 13-18.
[7]
芮锦毅群治钟. 基于时间序列分析的建筑能耗预测方法[J]. 暖通空调2013, 43(8): 71-77.
ZHOU Ruijin, PAN Yiqun, HUANG Zhizhong. Prediction method of building energy consumption based on time series analysis[J]. Journal of HV&AC, 2013, 43(8): 71-77.
[8]
大四. 改进的季节性指数平滑法预测空调负荷分析[J]. 同济大学学报(自然科学版), 2005, 33(12): 5.
HE Dasi, ZHANG Xu. Improved seasonal exponential smoothing method to predict air conditioning load analysis[J]. Journal of Tongji University (Natural Science Edition), 2005, 33(12): 5.
[9]
LU Shixiang, LIN Guoying, LIU Hanlin, et al. A weekly load data mining approach based on hidden Markov model[J]. IEEE Access, 2019, 7: 34609-34619.
[10]
LI Gen, LI Yunhua, ROOZITALAB F. Midterm load forecasting: A multistep approach based on phase space reconstruction and support vector machine[J]. IEEE Systems Journal, 2020, 14(4): 4967-4977.
[11]
HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[12]
建伟登福,等. 短期负荷预测的集成改进极限学习机方法[J]. 西安交通大学学报2009, 43(2): 106-110.
CHENG Song, YAN Jianwei, ZHAO Dengfu, et al. Integrated and improved extreme learning machine method for short-term load forecasting[J]. Journal of Xi'an Jiaotong University, 2009, 43(2): 106-110.
[13]
红旗飞翎国开,等. 基于经验模态分解和极限学习机的日输电量分时建模预测[J]. 智慧电力2021, 49(9): 63-69.
PANG Hongqi, GAO Feiling, CHENG Guokai, et al. Time-sharing prediction model of daily transmission electricity based on empirical mode decomposition and extreme learning machine[J]. Smart Power, 2021, 49(9): 63-69.
[14]
令春琼琼照峰. 蝙蝠算法优化极限学习机的电力负荷预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(1): 89-92.
KONG Lingchun, SUN Qiongqiong, YANG Zhaofeng. Power load prediction model of extreme learning machine optimized by bat algorithm[J]. Journal of Liaoning University of Engineering and Technology (Natural Science Edition), 2016, 35(1): 89-92.
[15]
方成彦珣,等. 基于改进遗传算法优化极限学习机的短期电力负荷预测[J]. 华北电力大学学报(自然科学版), 2018, 45(6): 1-7.
LI Fangcheng, LIU Yi, QI Yanxun, et al. Short-term power load forecasting based on improved genetic algorithm optimization of extreme learning machine[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(6): 1-7.
[16]
YANG Yi, SHANG Zhihao, CHEN Yao, et al. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting[J]. Energies, 2020, 13(3): 1-19.
[17]
明星淑清,等. 基于核主成分分析和极限学习机的短期电力负荷预测[J]. 电子测量与仪器学报2018, 32(1): 188-193.
DONG Hao, LI Mingxing, ZHANG Shuqing, et al. Short-term power load forecasting based on kernel principal component analysis and extreme learning machine[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(1): 188-193.
[18]
振中傅傲大明,等. 基于最大互信息系数和小波分解的多模型集成短期负荷预测[J]. 计算机应用与软件2021, 38(5): 82-87.
ZHANG Zhenzhong, GUO Fuao, LIU Daming, et al. Multi-model integrated short-term load forecasting based on maximum mutual information coefficient and wavelet decomposition[J]. Computer Applications and Software, 2021, 38(5): 82-87.
[19]
晓江金波,等. 基于智能集中器的短期电力负荷预测[J]. 电力系统及其自动化学报2020, 32(6): 140-145.
CHEN Xiaojiang, LIU Ye, ZHANG Jinbo, et al. Short-term power load forecasting based on intelligent concentrators[J]. Journal of Electric Power Systems and Automation, 2020, 32(6): 140-145.
[20]
若凌小红,等. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
SONG Jia, SHI Ruoling, GUO Xiaohong, et al. KELM based diagnostics for air vehicle faults[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 795-803.
[21]
SONG Yan, HE Bo, ZHAO Ying, et al. Segmentation of sidescan sonar imagery using Markov random fields and extreme learning machine[J]. IEEE Journal of Oceanic Engineering, 2019: 1-10.
[22]
DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165(1): 169-196.
[23]
东阳义发明洁,等. 基于粗糙集理论-主成分分析的Elman神经网络短期风速预测[J]. 电力系统保护与控制2014, 42(11): 46-51.
YIN Dongyang, SHENG Yifa, JIANG Mingjie, et al. Short-term wind speed prediction of elman neural network based on rough set theory-principal component analysis[J]. Power System Protection and Control, 2014, 42(11): 46-51.

基金

陕西省低能耗建筑节能创新示范工程研究项目(2017ZDXM-GY-025)
陕西省建设厅科技发展计划项目(2020-K17)

PDF(1609 KB)

Accesses

Citation

Detail

段落导航
相关文章

/