基于LMDI模型的能源系统碳排放影响因素分析

郭玉杰,张一瑾,杨馥源,田雪沁,王海猷

分布式能源 ›› 2022, Vol. 7 ›› Issue (3) : 30-36.

PDF(1115 KB)
PDF(1115 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (3) : 30-36. DOI: 10.16513/j.2096-2185.DE.2207304
学术研究

基于LMDI模型的能源系统碳排放影响因素分析

作者信息 +

Analysis of Factors Influencing Carbon Emissions of Energy Systems Based on LMDI Model

Author information +
文章历史 +

本文亮点

在“双碳”目标的背景下,作为全社会碳排放最主要的排放源,能源活动的碳减排尤为关键。为明确电力系统碳排放量、能源消费强度、产业结构等因素对能源系统碳排放的影响作用及贡献程度,基于灰色GM(1,1)模型对我国的能源消费总量进行预测,并进行模型检验以保证可行性。根据联合国政府间气候变化专门委员会(intergovernmental panel on climate change, IPCC)碳排放系数法,根据我国能源平衡表的数据对2015—2019年各行业碳排放量进行测算。在此基础上,利用对数平均迪氏指数法(logarithmic mean Divisia index, LMDI)构建碳排放分析模型,对结果标准化处理后分析各效应对能源系统碳排放量的影响程度。计算结果表明能源消费强度、人口数量、城镇化水平及电力碳排放量会促进能源系统碳排放增长,而能源消费强度、农村人口比重及产业结构起到了抑制作用。

HeighLight

In the context of the "carbon peaking and carbon neutrality" goals, as the main source of carbon emissions in the whole society, carbon reduction in energy activities is particularly critical. In order to clarify the role and contribution of power system carbon emissions, energy consumption intensity, industrial structure and other factors to the carbon emissions of energy system. Firstly, the total energy consumption in China is predicted based on the gray GM(1, 1) model, and the model is tested to ensure the feasibility. Secondly, based on the intergovernmental panel on climate change (IPCC) carbon emission factor method, the carbon emissions of each industry from 2015—2019 are measured based on the data of China's energy balance sheet. On this basis, a carbon emission analysis model is constructed using the logarithmic mean Divisia index (LMDI) method, and the results are standardized to analyze the degree of influence of each effect on the carbon emission of the energy system. The calculation results prove that energy consumption intensity, population size, urbanization level and carbon emission of electricity promote the growth of carbon emission of energy system, while energy consumption intensity, rural population share and industrial structure play a suppressing role.

引用本文

导出引用
郭玉杰, 张一瑾, 杨馥源, . 基于LMDI模型的能源系统碳排放影响因素分析[J]. 分布式能源. 2022, 7(3): 30-36 https://doi.org/10.16513/j.2096-2185.DE.2207304
Yujie GUO, Yijin ZHANG, Fuyuan YANG, et al. Analysis of Factors Influencing Carbon Emissions of Energy Systems Based on LMDI Model[J]. Distributed Energy Resources. 2022, 7(3): 30-36 https://doi.org/10.16513/j.2096-2185.DE.2207304
中图分类号: TK01   

参考文献

[1]
晓玲继宏朝鹏,等. 中国工业部门碳排放峰值预测及减排潜力研究[J]. 统计与信息论坛2020, 35(9): 72-82.
YUAN Xiaoling, XI Jihong, LI Chaopeng, et al. A study on carbon emission peak forecaast and reduction potential of China's industrial sector [J]. Journal of Statistics and Information, 2020, 35(9): 72-82.
[2]
MASSETTI E, CARRARO C, GUPTA S, et al. Investments in and macroeconomic costs of climate mitigation in the Working Group III contribution to the Fifth Assessment Report of the IPCC[J]. Energy Policy, 2017, 109: 414-417.
[3]
纪远文慧,等. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报2018, 73(5): 789-802.
LIU Jiyuan, NING Jia, KUANG Wenhui, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010—2015 [J]. Acta Geographica Sinica, 2018, 73(5): 789-802.
[4]
ZHENG X, LU Y, YUAN J, et al. Drivers of change in China's energy-related CO2 emissions[J]. Proceedings of the National Academy of Sciences, 2020, 117(1): 29-36.
[5]
雅雯. 中国电力行业碳排放影响因素研究[D]. 哈尔滨:哈尔滨工业大学,2019.
BAI Yawen. Research on the factors influencing factors of carbon emissions in China's power industry[D]. Harbin: Harbin Institute of Technology, 2019.
[6]
PACHAURI K, MEYER A. Climate change 2014. synthesis report[J]. Environmental Policy Collection, 2014, 27(2): 408.
[7]
长建虹鸥. 新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J]. 生态学报2016, 36(8): 2151-2163.
WANG Changjian, WANG Fei, ZHANG Hongou. The process of energy-related carbon emissions and influencing mechanism research in Xinjiang [J]. Acta Ecologica Sinica, 2016, 36(8): 2151-2163.
[8]
海涛. 基于LMDI模型的长三角城市能源消费碳排放影响因素分解研究[J]. 商展经济2022(7): 130-132.
LIU Fang, JIANG Haitao. Analysis of influencing factors of carbon emissions from energy consumption in the Yangtze River Delta based on LMDI model[J]. Trade Fair Economy, 2022(7): 130-132.
[9]
叶青哲野守志,等. 中国能源消费碳排放强度及其影响因素的空间计量[J]. 地理学报2013, 68(10): 1418-1431.
CHENG Yeqing, WANG Zheye, ZHANG Shouzhi, et al. Spatiotemporal dynamics of carbon intensity from energy consumption in China [J]. Acta Geographica Sinica, 2013, 68(10): 1418-1431.
[10]
红兵. 我国碳排放影响因素分析[D]. 武汉:华中科技大学,2012.
HE Hongbing. Factors analysis of the influencing China's carbon emissions[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[11]
万波婷婷. 中国不同经济增长阶段碳放影响因素研究[J]. 经济研究2013, 48(4): 106-118.
LU Wanbo, QIU Tingting, DU Lei. A study on influence factors of carbon emissions under different economic growth stages in China [J]. Economic Research Journal, 2013, 48(4): 106-118.
[12]
DONG F, LONG R, BIAN Z, et al. Applying a ruggiero three-stage super-efficiency DEA model to gauge regional carbon emission efficiency: Evidence from China[J]. Natural Hazards, 2017, 87(3): 1453-1468.
[13]
书琪. 基于LMDI-PDA-MMI分解法的我国产业体系碳排放驱动因素研究[J]. 生态经济2022, 38(5): 33-39.
ZHENG Rui, DIAO Shuqi. Investigating the driving factors of carbon emissions in China's industrial system using the LMDI-PDA-MMI Method[J]. Ecological Economy, 2022, 38(5): 33-39.
[14]
运洲红才,等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力2021, 54(3): 1-11.
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1-11.
[15]
文荣. 基于灰色系统理论的江苏省能源消费研究[D]. 南京:南京信息工程大学,2016.
CHENG Wenrong. The research on energy consumption of Jiangsu province based on gray system theory[D]. Nanjing: Nanjing University of Information Engineering, 2016.
[16]
路缘. 基于改进的灰色模型在中长期电力负荷预测中的应用研究[D]. 哈尔滨:哈尔滨理工大学,2018.
HE Luyuan. Application of improved gray model in mid and long term load forecasting[D]. Harbin: Harbin Institute of Technology, 2018.
[17]
. 中国碳排放测算分析与减排路径选择研究[D]. 沈阳:辽宁大学,2013.
FAN Xing. Calculation of carbon emissions and research on reduction path in China[D]. Shenyang: Liaoning University, 2013.
[18]
ANG B W, ZHANG F Q. A survey of index decomposition analysis in energy and environmental studies[J]. Energy (Oxford), 2000, 25(12): 1149-1176.
[19]
ANG B W. Decomposition analysis for policymaking in energy: [J]. Energy Policy, 2004, 32(9): 1131-1139.
[20]
军委. 基于LMDI的我国二氧化碳排放影响因素研究[D]. 北京:中国矿业大学,2013.
XU Junwei. Study on the factors of China's carbon dioxide emissions based on LMDI[D]. Beijing: China University of Mining and Technology, 2013
[21]
雨晴. 我国城镇化发展驱动力的三因素分析——基于LMDI的乘法分解[J]. 学习与实践2014(11): 13-18.
YAO Yu, ZHAO Yuqing. A three-factor analysis of the drivers of urbanization development in China—a multiplicative decomposition based on LMDI[J]. Study and Practice, 2014(11): 13-18.

基金

国网经济研究院有限公司自主立项项目(基于新能源云的电力系统碳排放达峰路径研究)

PDF(1115 KB)

Accesses

Citation

Detail

段落导航
相关文章

/