基于分组教与学优化算法的光伏电池模型参数辨识

杨莎,张耀,徐胜,廖子文,李俊贤

分布式能源 ›› 2022, Vol. 7 ›› Issue (3) : 52-61.

PDF(2121 KB)
PDF(2121 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (3) : 52-61. DOI: 10.16513/j.2096-2185.DE.2207307
应用技术

基于分组教与学优化算法的光伏电池模型参数辨识

作者信息 +

Parameter Identification of Photovoltaic Cell Model Based on Grouping Teaching-Learning-Based Optimization Algorithm

Author information +
文章历史 +

本文亮点

为了提高光伏发电系统建模过程中光伏电池的参数辨识精度,在基本的教与学优化算法(teaching-learning-based optimization, TLBO)的基础上,针对其存在易于出现精度不高且陷入局部最优等问题,提出了一种基于分组的教与学优化算法(grouping teaching-learning-based optimization, GTLBO)。GTLBO算法在教学阶段采用了分组教学的方式,并对教学因子进行了改进,将GTLBO算法应用于单二极管模型、双二极管模型和3个光伏组件模型的参数提取。实验结果表明,与其他优化算法相比,GTLBO算法在光伏模型参数提取方面更加准确可靠。其次,相对于基础的TLBO算法,GTLBO算法的收敛速度和辨识精度都得到了提高,具有一定的可行性和实用性。

HeighLight

In order to improve the parameter identification accuracy of photovoltaic cells in the process of photovoltaic power generation system modeling, based on the basic teaching-learning-based optimization (TLBO) algorithm, aiming at the problems of low accuracy and falling into local optimum, A grouping teaching-learning-based optimization (GTLBO) algorithm is proposed. In the teaching stage, the GTLBO algorithm adopts the grouping teaching method and improves the teaching factors. The GTLBO algorithm is applied to the parameter extraction of single diode model, double diode model and three photovoltaic module model. Experimental results show that compared with other optimization algorithms, GTLBO algorithm is more accurate and reliable in photovoltaic model parameter extraction. Secondly, compared with the basic TLBO algorithm, the convergence speed and identification accuracy of GTLBO algorithm are improved, and it has certain feasibility and practicability.

引用本文

导出引用
杨莎, 张耀, 徐胜, . 基于分组教与学优化算法的光伏电池模型参数辨识[J]. 分布式能源. 2022, 7(3): 52-61 https://doi.org/10.16513/j.2096-2185.DE.2207307
Sha YANG, Yao ZHANG, Sheng XU, et al. Parameter Identification of Photovoltaic Cell Model Based on Grouping Teaching-Learning-Based Optimization Algorithm[J]. Distributed Energy Resources. 2022, 7(3): 52-61 https://doi.org/10.16513/j.2096-2185.DE.2207307
中图分类号: TK51; TM914.4   

参考文献

[1]
国玉宏华慧文. 光伏组件双二极管模型参数辨识混合方法研究[J]. 电源技术2021, 45(8): 1061-1065.
ZHANG Guoyu, WANG Honghua, ZHAO Huiwen. Research on hybrid method for parameter identification of the twodiode model of PV modules[J]. Chinese Journal of Power Sources, 2021, 45(8): 1061-1065.
[2]
维唯. 国际太阳能发电产业现状及发展趋势[J]. 太阳能2020(1): 5-12.
MA Weiwei. Global status and trends of solar power generation industry[J]. Solar Energy, 2020(1): 5-12.
[3]
乾坤莉萍琼慧. 我国发展光伏发电存在的问题面临的形势及建议[J]. 能源技术经济2011, 23(10): 15-18.
WANG Qiankun, JIANG Liping, LI Qionghui. Problems and suggestions for PV generation industry in China[J]. Electric Power Technologic Economics, 2011, 23(10): 15-18.
[4]
炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源2015, 36(4): 487-490.
YUAN Weidong. Current development and prospect of solar-thermal power generation in China and abroad[J]. Power & Energy, 2015, 36(4): 487-490.
[5]
忠强丹丹梦瑶,等. 基于改进蝗虫优化算法的光伏电池模型参数辨识[J]. 计量学报2020, 41(12): 1536-1543.
WU Zhongqiang, SHEN Dandan, SHANG Mengyao, et al. Parameter identification of photovoltaic cell model based on improved grasshopper optimization algorithm[J]. Acta Metrologica Sinica, 2020, 41(12): 1536-1543.
[6]
CÁRDENAS A, CA RRASCO M, MANCILLA-DAVID F, et al. Experimental parameter extraction in the single-diode photovoltaic model via a reduced-space search[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1468-1476.
[7]
AYANG A, WAMKEUE R, OUHROUCHE M, et al. Maximum likelihood parameters estimation of single-diode model of Photovoltaic generator[J]. Renewable Energy, 2018, 130: 111-121.
[8]
家强晓军. 一种基于改进型樽海鞘群算法的光伏电池参数辨识方法[J]. 电工技术2021(14): 58-61, 64.
YI Wei, YANG Jiaqiang, ZHANG Xiaojun. A Photovoltaic cell parameter identification method based on improved salp swarm algorithm[J]. Electric Engineering, 2021(14): 58-61, 64.
[9]
国汉. 基于精英反向学习粒子群算法的光伏电池参数辨识[J]. 湖南工程学院学报(自然科学版), 2021, 31(2): 1-7.
ZHANG Xiao, LIN Guohan, HU Hui. Parameter identification of PV cell based on elite opposite learning particle swarm optimization[J]. Journal of Hunan Institute of Engineering(Natural Science Edition), 2021, 31(2): 1-7.
[10]
CHEN H, JIAO S, WANG M, et al. Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts[J]. Journal of Cleaner Production, 2019: 118778.
[11]
JORDEHI R A. Parameter estimation of solar photovoltaic (PV) cells: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 61: 354-371.
[12]
CHARLES J P, ABDELKRIM M, MUOY Y H, et al. A practical method of analysis of the current-voltage charac-teristics of solar cells[J]. Solar Cells, 1981, 4(2): 169-178.
[13]
KHANNA V, DAS B K, BISHT D, et al. Estimation of photovoltaic cells model parameters using particle swarm optimization[M]. Physics of Semiconductor Devices, 2014.
[14]
ISMAIL M S, MOGHAVVEMI M, MAHLIA T M I. Characterization of PV panel and global optimization of its model parameters using genetic algorithm[J]. Energy Conversion and Management, 2013, 73(9): 10-25.
[15]
RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1): 1-15.
[16]
STORN R, PRICE K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[17]
献忠怀樵,等. 自适应差分进化算法在光伏组件模型参数辨识中的应用[J]. 电力科学与工程2018, 34(4): 1-7.
WU Tao, JIAN Xianzhong, YING Huaiqiao, et al. Application of adaptive differential evolution algorithm in parameter identification of photovoltaic module model[J]. Electric Power Science and Engineering, 2018, 34(4): 1-7.
[18]
YU K, LIANG J J, QU B Y, et al. Parameters identification of photovoltaic models using an improved jaya optimization algorithm[J]. Energy Conversion and Management, 2017, 150: 742-753.
[19]
CHEN X, XU B, MEI C, et al. Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation[J]. Applied Energy, 2018, 212: 1578-1588.
[20]
建浩. 基于AEPSO-BPNN的光伏阵列多场景参数辨识[J]. 智慧电力2020, 48(10): 37-44.
XU Yan, ZHANG Jianhao. Multi-scene parameter identification of photovoltaic array based on AEPSO-BPNN[J]. Smart Power, 2020, 48(10): 37-44.
[21]
ALASAN M, ALEEM S, ZOBAA A F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function[J]. Energy Conversion and Management, 2020, 210: 112716.
[22]
文明,等. 基于改进教与学优化的光伏阵列模型参数辨识研究[J]. 电力需求侧管理2022, 24(1): 14-20, 27.
DING Xiao, ZHENG Wenming, YUE Li, et al. Research on parameter identification of photovoltaic array model based on improved teaching and learning optimization[J]. Power Demand Side Management, 2022, 24(1): 14-20, 27.
[23]
CHEN X, YU K, DU W, et al. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization[J]. Energy, 2016, 99(15): 170-180.
[24]
LI S, GONG W, YAN X, et al. Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization[J]. Energy Conversion and Management, 2019, 186: 293-305.
[25]
XIONG G, ZHANG J, SHI D, et al. Parameter extraction of solar photovoltaic models with an either-or teaching learning based algorithm[J]. Energy Conversion and Management, 2020, 224: 113395.
[26]
NIU Q, ZHANG H, LI K. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3837-3854.
[27]
JORDEHI A R. Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules[J]. Solar Energy, 2018, 159: 78-87.
[28]
LIANG J, GE S, QU B, et al. Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models[J]. Energy Conversion and Management, 2020, 203: 112138.

基金

工业物联网与网络化控制教育部重点实验室开放基金(2021FF06)

PDF(2121 KB)

Accesses

Citation

Detail

段落导航
相关文章

/