有机硅在锂离子电池电解质中的应用研究

张玉坤

分布式能源 ›› 2022, Vol. 7 ›› Issue (3) : 78-84.

PDF(1490 KB)
PDF(1490 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (3) : 78-84. DOI: 10.16513/j.2096-2185.DE.2207310
应用技术

有机硅在锂离子电池电解质中的应用研究

作者信息 +

Study on Application of Organosilicon in Electrolyte of Lithium Ion Battery

Author information +
文章历史 +

本文亮点

电解质作为锂离子电池的重要组成部分,对于锂离子电池的安全高效使用至关重要。有机硅具备优异的热稳定性和化学稳定性,且易于实施化学改性,作为锂离子电池电解质具备很大潜力。从有机硅在锂离子电池电解质的应用范畴出发,综述了近年来人们对有机硅在电解质应用领域的探索,同时有机硅电解质的未来研究方向进行了展望。

HeighLight

As an important component of lithium ion battery, electrolyte plays an important role in the safe and efficient use of lithium ion battery. Organic silicon has excellent thermal stability and chemical stability, and is easy to implement chemical modification, as a lithium ion battery electrolyte has great potential. Based on the application of organosilicon in lithium ion battery electrolyte, this paper reviews the application of organosilicon in electrolyte in recent years, and prospects the future research direction of organosilicon electrolyte.

引用本文

导出引用
张玉坤. 有机硅在锂离子电池电解质中的应用研究[J]. 分布式能源. 2022, 7(3): 78-84 https://doi.org/10.16513/j.2096-2185.DE.2207310
Yukun ZHANG. Study on Application of Organosilicon in Electrolyte of Lithium Ion Battery[J]. Distributed Energy Resources. 2022, 7(3): 78-84 https://doi.org/10.16513/j.2096-2185.DE.2207310
中图分类号: TK02; TM912   

参考文献

[1]
KHARBACHI A E, ZAVOROTYNSKA O, LATROCHE M, et al. Exploits, advances and challenges benefiting beyond li-ion battery technologies[J]. Journal of Alloys and Compounds, 2020, 817(19): 153261-153317.
[2]
LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561-1800584.
[3]
THIEDE S, TURETSKYY A, KWADE A, et al. Data mining in battery production chains towards multi-criterial quality prediction[J]. CIRP Annals, 2019, 68(1): 463-466.
[4]
ZHANG Lei, QIN Quande. China's new energy vehicle policies: Evolution, comparison and recommendation[J]. Transportation Research Part A Policy & Practice, 2018, 110: 57-72.
[5]
GLOSER-CHAHOUD A, HUSTER A, ROSENBERG S. Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems[J]. Resources, Conservation and Recycling, 2021, 174: 105735-105749.
[6]
TOLGANBEK N, SERIK N, BATRYGALI N, et al. Application of thin film as polymer gel electrolyte for 3D li-ion battery[J]. ECS Meeting Abstracts, 2020, MA2020-02(45): 3800-3800.
[7]
LIU Xi, SUN Yingjuan, TONG Yong, et al. Exploration in materials, electrolyte and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review[J]. Nano Energy, 2021, 86(8): 106070-106101.
[8]
ZHAO Zhongke, ZHANG Yingmeng, LI Shaojun, et al. A lithium carboxylate grafted dendrite-free polymer electrolyte for all-solid-state lithium-ion battery[J]. Journal of Materials Chemistry A, 2019, 7(45): 25818-25823.
[9]
JIANG Yunhong, LI Feng, MEI Yufan, et al. Gel polymer electrolyte based on hydrophilic-lipophilic tio2-modified thermoplastic polyurethane for high-performance Li-ion batteries[J]. Journal of Materials Science, 2021, 56(3): 2474-2485.
[10]
ZHAO Yanbiao, BAI Yang, BAI Yongpin, et al. A rational design of solid polymer electrolyte with high salt concentration for lithium battery[J]. Journal of Power Sources, 2018, 407(15): 23-30.
[11]
DEYAB M A, MELE G, BLOISE E, et al. Novel nanocomposites of ni-pc/polyaniline for the corrosion safety of the aluminum current collector in the li-ion battery electrolyte[J]. Scientific Reports, 2021, 11(1): 12371-12378.
[12]
XU Gaojie, ZHAO Min, XIE Bin, et al. A rigid-flexible coupling gel polymer electrolyte towards high safety flexible li-ion battery[J]. Journal of Power Sources, 2021, 499: 229944-229951.
[13]
XU Ziqiang, LI Wenlei, CHEN Zhi, et al. Chemically modified polyvinyl butyral polymer membrane as a gel electrolyte for lithium ion battery applications[J]. Macromolecular Materials and Engineering, 2018, 304(1): 1800477-1800684.
[14]
EHTENSHAMI N, IBING L, STOLZ L, et al. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes[J]. Journal of Power Sources, 2020, 451(1): 227804-227812.
[15]
LIU G, WANG D, ZHANG J, et al. Preventing dendrite growth by a soft piezoelectric material [J]. ACS Materials Letter, 2019, 1: 498-505.
[16]
SHI J, EHTESHAMI N, MA J, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429(31): 67-74.
[17]
DU K, WANG C, SUBASINGHE L U, et al. A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery-ScienceDirect[J]. Energy Storage Materials, 2020, 29: 287-299.
[18]
YU Feng, ZHANG Hongbing, ZHAO Lingzhu, et al. A flexible cellulose/methylcellulose gel polymer electrolyte endowing superior li+ conducting property for lithium ion battery[J]. Carbohydrate Polymers, 2020, 246: 116622-116651.
[19]
LEE T K, ZAINI N F M, MOBARAK N N, et al. PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for li-ion polymer battery application[J]. Electrochimica Acta, 2019, 316(2): 283-291.
[20]
NAOKI N, KAZUHISA K, KIYOHARU N. Effect of sei component on graphite electrode performance for li-ion battery using ionic liquid electrolyte[J]. Journal of the Electrochemical Society, 2018, 165(9): A1621-A1625.
[21]
ERICKSON E M, MARKEVICH E, SALITRA G, et al. Review-development of advanced rechargeable batteries: A continuous challenge in the choice of suitable electrolyte solutions[J]. Journal of the Electrochemical Society, 2015, 162(14): 2424-2438.
[22]
LIU Gang, SUN Qujiang, LI Qian, et al. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges[J]. Energy & Fuels, 2021, 35(13): 10405-10427.
[23]
长有. 高分子材料概论[M]. 北京:化学工业出版社,2018: 125-126.
[24]
RANGEL R C C, CRUZ N C, RANGEL E C. Role of the plasma activation degree on densification of organosilicon films[J]. Materials, 2020, 13(1): 25-41.
[25]
TSAO C H, KUO P L. Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery[J]. Journal of Membrane Science, 2015, 489: 36-42.
[26]
KWON D H, JEONG J, LEE Y J, et al. Carbon nano tube-polymer hybrid nanocomposite electrodes for porous polydimethylsiloxane sponge-based flexible triboelectric nanogenerators[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(9): 4680-4684.
[27]
WANG Hualan, CHEN Shuangxi, LI Yan, et al. Organosilicon-based functional electrolytes for high-performance lithium batteries[J]. Advanced Energy Materials, 2021, 28(11): 2101057-2101082.
[28]
OH B, VISSERS D, ZHANG Z, et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. Journal of Power Sources, 2003, 119(1): 442-447.
[29]
月姣雅静,等. 有机硅在锂离子电池电解质中的应用[J]. 功能材料2014, 45(22): 22001-22005.
LI Yuejiao, LI Yajing, WU Feng, et al. The progress in exploration of organosiloxane used in the electrolyte to improve the lithium batteries' safety performance[J]. Journal of Functional Materials, 2014, 45(22): 22001-22005.
[30]
WANG Jinlun, YONG Tianqiao, YANG Jianwen, et al. Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries[J]. RSC Advances, 5(23), 17660-17666.
[31]
WANG Jinlun, LUO Hao, MAI Yongjin, et al. Synthesis of aminoalkylsilanes with oligo(ethylene oxide) unit as multi-functional electrolyte additives for lithium-ion batteries[J]. Science China Chemistry, 2013, 56(6): 739-745.
[32]
WANG Hao, SUN Daming, LI Xiang, et al. Alternative multifunctional cyclic organosilicon as an efficient electrolyte additive for high performance lithium-ion batteries[J]. Electrochimica Acta, 2017, 254(10): 112-122.
[33]
靖伦永津,等. 有机硅电解液添加剂对锂二次电池负极表面的改性研究[J]. 新能源进展2014, 2(1): 49-58.
XIE Bo, WANG Jinglun, MAI Yongjin, et al. Organosilicon compounds as electrolyte additives for surface modification of anode in lithium secondary battery[J]. Advances in New and Renewable Energy, 2014, 2(1): 49-58.
[34]
子龙凡凡玉华,等. 功能硅烷在有机-无机复合固态电解质中的应用研究进展[J]. 化工学报2021, 72(10): 5002-5015.
TANG Zilong, XIAO Fanfan, YIN Yuhua, et al. Recent advances in application of functional organosilane for organic-inorganic composite solid electrolyte[J]. CIESC Journal, 2021, 72(10): 5002-5015.
[35]
Enevate Corporation. Lithium/carbon monofluoride batteries with organosilicon electrolytes: US20110274985[P]. 2011.
[36]
ZHENG Yezhen, XU Ningbo, CHEN Shijian, et al. Construction of a stable lini0.8co0.1mn0.1o2 (ncm811) cathode interface by a multifunctional organosilicon electrolyte additive[J]. ACS Applied Energy Materials, 2020, 3(3): 2837-2845.
[37]
欣悦靖伦晓丹,等. 腈基功能化有机硅电解液添加剂对LiFePO4电池低温性能的影响[J]. 高等学校化学学报2019, 40(6): 1258-1264.
ZHAO Xinyue, WANG Jinglun, YAN Xiaodan, et al. Effect of nitrile group functionalized organosilicon as electrolyte additive on low-temperature performance of lifepo4 battery [J]. Chemical Journal of Chinese Universities, 2019, 40(6): 1258-1264
[38]
DONG Zhiyuan, WEI Junqiang, YUE Hongyun, et al. Multifunctional organosilicon compound contributes to stable operation of high-voltage lithium metal batteries[J]. Journal of Colloid and Interface Science, 2021, 595(8): 35-42.
[39]
HUANG J H, Shkrob I A, WANG P Q, et al. 1, 4-Bis(trimethylsilyl)-2, 5-dimethoxybenzene: a novel redox shuttle additive for overcharge protection in lithium-ion batteries that doubles as a mechanistic chemical probe[J]. Journal of Materials Chemistry A, 2015, 3(14): 7332-7337.
[40]
IMHOLT L, ROSER S, BORNER M, et al. Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells[J]. Electrochimica Acta, 2017, 235: 332-339.
[41]
LI Yong, YANG Zhenyin, LI Tianrong, et al. Synthesis, characterization, dna binding properties and antioxidant activity of ln(iii) complexes with schiff base ligand derived from 3-carbaldehyde chromone and aminophenazone[J]. Journal of Fluorescence, 2011, 21(3): 1091-1102.
[42]
LEE B, CHO J H, SEO H R, et al. Strategic combination of grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries[J]. Journal of Materials Chemistry A, 2018, 10: 1039-1052.
[43]
LIM S H, CHO W, KIM Y J, et al. Insight into the electrochemical behaviors of 5V-class high-voltage batteries composed of lithium-rich layered oxide with multifunctional additive[J]. Journal of Power Sources, 2016, 336(30): 465-474.
[44]
靖伦冲宇,等. 锂离子电池有机硅功能电解液[J]. 化学进展2020, 32(4): 467-480.
WANG Jinglun, RAN Qin, HAN Chongyu, et al. Organosilicon functionalized electrolytes for lithium-ion batteries[J]. Progress in Chemistry, 2020, 32(4): 467-480.
[45]
Envate Corporation. Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives: US11165099B2[P]. 2021.
[46]
Silatronix Inc. Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability: US10790536B2[P]. 2020.
[47]
Johnson IP Holding LLC. Rechargeable lithium air battery having organosilicon-containing electrolyte: US20130130131 A1[P]. 2013.
[48]
ROSSI N A, WEST R. Silicon-containing liquid polymer electrolytes for application in lithium ion batteries[J]. Polymer International, 2010, 58(3): 267-272.
[49]
HOOPER R, LYONS L J, Mapes M K, et al. Highly conductive siloxane polymers[J]. Macromolecules, 2001, 34(4): 931-936.
[50]
ROSSI N, ZHANG Z C, SCHNEIDER Y, et al. Synthesis and characterization of tetra- and trisiloxane-containing oligo(ethylene glycol)s highly conducting electrolytes for lithium batteries[J]. Chemistry of Materials, 2006, 18(5): 1289-1295.
[51]
CHEN X, USREY M, PENA-HUESO A, et al. Thermal and electrochemical stability of organosilicon electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2013, 241: 311-319.
[52]
MAI Yongjin, LUO Hao, ZHAO Xinyue, et al. Organosilicon functionalized quaternary ammonium ionic liquids as electrolytes for lithium-ion batteries[J]. Ionics, 2014, 20(9): 1207-1215.
[53]
YONG Tianqiao, WANG Jinglun, MAI Yongjin, et al. Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 254(15): 29-32.
[54]
YAN Xiaodan, ZHANG Lingzhi, LU Jidian. Improve safety of high energy density LiNi1/3Co1/3Mn1/3O2/graphite battery using organosilicon electrolyte[J]. Electrochimica Acta, 2018, 296(10): 149-154.
[55]
贤华. 基于尼龙6和聚偏氟乙烯复合隔膜的凝胶聚合物电解质[J]. 华南师范大学(自然科学版), 2022, 54(1): 36-41.
WU Xu, HOU Xianhua. The gel polymer electrolyte based on nylon 6 and polyvinylidene fluoride membrane [J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(1): 36-41.
[56]
GONG Xiaodong, LUO Huan, LIU Gang, et al. High-performance gel polymer electrolytes derived from PAN-POSS/PVDF composite membranes with ionic liquid for lithium ion batteries[J]. Ionics, 2021, 21: 2945-2953.
[57]
昌浩允琪,等. 硅烷改性交联聚醚凝胶电解质的制备及性能研究[J]. 功能材料2021, 52(9): 9078-9082.
FENG Changhao, GAO Yunqi, ZHANG Xu, et al. Preparation and performance investigation of crosslinked polyether gel electrolyte modified by silane[J]. Journal of Functional Materials, 2021, 52(9): 9078-9082.
[58]
LG Chem Ltd. Gel polymer electrolyte and lithium secondary battery comprising same: EP3203565A1[P]. 2017.
[59]
KARTINI E, YAPRIADI V, JODI H, et al. Solid electrolyte composite Li4P2O7-Li3PO4 for lithium ion battery[J]. Progress in Natural Science: Materials International, 2020, 30(2): 168-173.
[60]
SONG Y W, HEO K, LEE J, et al. Lithium-ion transport in inorganic active fillers used in PEO-based composite solid electrolyte sheets[J]. RSC Advances, 2021, 11(51): 31855-31864.
[61]
HANS-GEORG STEINRÜCK, CAO C, VEITH G M, et al. Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries[J]. The Journal of Chemical Physics, 2020, 152(8): 84702-84712.
[62]
ZHAO Xinyue, WANG Jinglun, LUO Hao, et al. A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries [J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 155-162.
[63]
WANG Qinglei, ZHANG Huanrui, CUI Zili, et al. Siloxane-based polymer electrolytes for solid-state lithium batteries-ScienceDirect [J]. Energy Storage Materials, 2019, 23(12): 466-490.

PDF(1490 KB)

Accesses

Citation

Detail

段落导航
相关文章

/