考虑网损及经济性的综合源储优化及电池容量设计

闫瑾, 刘丁玮, 罗日成, 刘鹏, 冯健, 邓华宇, 钟焱

分布式能源 ›› 2022, Vol. 7 ›› Issue (4) : 1-9.

PDF(1437 KB)
PDF(1437 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (4) : 1-9. DOI: 10.16513/j.2096-2185.DE.2207401
学术研究

考虑网损及经济性的综合源储优化及电池容量设计

作者信息 +

Integrated Source-Storage Optimization and Battery Capacity Design Considering Network Loss and Economy

Author information +
文章历史 +

本文亮点

Wind power output is characterized by intermittensity and instability, and distributed wind power is offen difficult to meet load demand independently, and the wind curtailment rate is high. Therefore, wind power, small hydropower and energy storage batteries are connected to the distribution network at the same time to ensure the stability of the system and reduce the wind curtailment rate of the system. Firstly, the access positions of wind power and small hydropower are calculated with the goal of minimizing the network loss, and verified by PSASP software. Then, the voltage offsets of access nodes are measured by Matlab software. Secondly, the access position of vanadium redox battery (VRB) is obtained with the goal of minimizing the network loss. Then, the multi-objective function is constructed by considering the total cost and air abandon volume. The optimized function is obtained by using the improved hybrid based particle swarm optimization algorithm. Finally, the IEEE 36-node system and the actual wind and hydropower farm data in a certain area are used to verify the effectiveness of the proposed method. The simulation results show that the proposed method can reduce the wind curtailment rate of wind power, maintain the stability of the system, meet the demand of users, and meet the economic requirements.

引用本文

导出引用
闫瑾, 刘丁玮, 罗日成, . 考虑网损及经济性的综合源储优化及电池容量设计[J]. 分布式能源. 2022, 7(4): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2207401
Jin YAN, Dingwei LIU, Richeng LUO, et al. Integrated Source-Storage Optimization and Battery Capacity Design Considering Network Loss and Economy[J]. Distributed Energy Resources. 2022, 7(4): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2207401
中图分类号: TK02   

参考文献

[1]
欣然绍杰,等. 考虑经济性的风储联合双应用的储容配置方法[J]. 电力系统及其自动化学报2017, 29(2): 7-13.
WANG Ming, LI Xinran, TAN Shaojie, et al. Capacity configuration method of energy storage in wind-ess coordination considering economic efficiency [J]. Proceedings of the CSU-EPSA, 2017, 29(2): 7-13.
[2]
俊玲彦涛晓辉,等. 减少弃风损失的储能容量和布局优化研究[J]. 电力建设2016, 37(6): 24-30.
WU Junling, ZHANG Yantao, QIN Xiaohui, et al. Study on energy storage capacity and layout optimization by reducing wind power curtailment loss[J]. Electric Power Construction, 2016, 37(6): 24-30.
[3]
欣然庄熙,等. 基于不同种类储能电池参与一次调频的最优策略经济性对比[J]. 高电压技术2022, 48(4): 1403-1410.
LIU Xin, LI Xinran, TAN Zhuangxi, et al. Economic comparison of optimal strategies based on different types of energy storage batteries participating in primary frequency regulation [J]. High Voltage Engineering, 2022, 48(4): 1403-1410.
[4]
美丹晓喆焕海,等. 计及网损的配电网电池储能站优化运行策略[J]. 电网技术2013, 37(8): 2123-2128.
ZHANG Meidan, SONG Xiaozhe, XIN Huanhai, et al. Optimal operation strategy of battery energy storage system in distribution networks with consideration of power losses[J]. Power System Technology, 2013, 37(8): 2123-2128.
[5]
素华耀武,等. 基于可变寿命模型的电池储能容量优化配置[J]. 电工技术学报2015, 30(4): 265-271.
LOU Suhua, YI Lin, WU Yaowu, et al. Optimizing deployment of battery energy storage based on lifetime predication[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 265-271.
[6]
秋瑜,等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报2014, 34(16): 2533-2543.
ZHENG Le, HU Wei, LU Qiuyu, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533-2543.
[7]
亦农若晨,等. 风光联合发电系统的储能容量优化配置方法[J]. 水电能源科学2020, 38(5): 202-206.
QIU Cheng, LI Yinong, SONG Ruochen, et al. Optimization configuration of energy storage capacity of wind and photovoltaic generation system[J]. Water Resources and Power, 2020, 38(5): 202-206.
[8]
晨阳金华. 基于电池特性的风电场综合储能优化配置[J]. 现代电力2021, 30(2): 1007-2322.
HAN Chenyang, ZHANG Peng, XU Jinhua. Optimal configuration of integrated energy storage for wind farms based on battery characteristics[J]. Modern Electric Power, 2021, 30(2): 1007-2322.
[9]
军徽英男翠萍,等. 提升风电消纳的储热电混合储能系统经济优化配置[J]. 电网技术2020, 44(12): 4547-4557.
LI Junhui, FU Yingnan, LI Cuiping, et al. Economic optimal configuration of hybrid energy storage system for improving wind power consumption[J]. Power System Technology, 2020, 44(12): 4547-4557.
[10]
,等. 基于需求响应的光伏微网储能系统多目标容量优化配置[J]. 电网技术2016, 40(6): 1709-1716.
ZHOU Nan, FAN Wei, LIU Nian, et al. Battery storage multi-objective optimization for capacity configuration of PV-based microgrid considering demand response[J]. Power System Technology, 2016, 40(6): 1709-1716.
[11]
宇峰民翔承晋. 基于电池储能系统动态调度的微电网多目标运行优化[J]. 电力自动化设备2014, 34(6): 114-121.
ZHONG Yufeng, HUANG Minxiang, YE Chengjin. Multi-objective optimization of microgrid operation based on dynamic dispatch of battery energy storage system[J]. Electric Power Automation Equipment, 2014, 34(6): 114-121.
[12]
BYRNE R H, NGUYEN T A, COPP D A, et al. Energy management and optimization methods for grid energy storage systems[J]. IEEE Access, 2018, 6: 13231-13260.
[13]
星邑,等. 大容量全钒液流电池均衡控制策略及仿真[J]. 电力电子技术2016, 50(11): 53-56.
LI Xin, WANG Ning, CHEN Xingyi, et al. Balanced control strategy and simulation of large capacity all vanadium redox flow battery[J]. Power Electronics, 2016, 50(11): 53-56.
[14]
国杰志伟宏展,等. 钒液流储能电池建模及其平抑风电波动研究[J]. 电力系统保护与控制2010, 38(22): 115-119, 125.
LI Guojie, TANG Zhiwei, NIE Hongzhan, et al. Modelling and controlling of vanadium redox flow battery to smooth wind power fluctuations[J]. Power System Protection and Control, 2010, 38(22): 115-119, 125.
[15]
志君桂林振斌,等. 提升新能源电网消纳水平的混合储能系统优化控制方法[J]. 电力系统及其自动化学报2021, 33(3): 132-137.
E Zhijun, WANG Guilin, LI Zhenbin, et al. Optimization control method for hybrid energy storage system to enhance the renewable energy absorption level of power grid[J]. Proceedings of the CSU-EPSA, 2021, 33(3): 132-137.
[16]
YANG P, NEHORAI A. Joint optimization of hybrid energy storage and generation capacity with renewable energy[J]. IEEE Transactions on Smart Grid, 2017, 5(4): 1566-1574.
[17]
星璇敏鹏家海. 风电场发电侧配置储能系统的经济性研究[J]. 智慧电力2020, 48(11): 16-21, 47.
XI Xingxuan, XIONG Minpeng, YUAN Jiahai. Economy analysis of energy storage system in wind farm generation side[J]. Smart Power, 2020, 48(11): 16-21, 47.
[18]
. 分布式电源在配电网络中优化选址与定容的研究[J]. 电力系统保护与控制2012, 40(20): 73-78.
ZHUANG Yuan, WANG Lei. Research of distributed generation optimal layout and capacity confirmation in distribution network[J]. Power System Protection and Control, 2012, 40(20): 73-78.
[19]
永会亚谱,等. 考虑源-储特性的分布式电源并网阶段优化与评估方法[J]. 太阳能学报2020, 41(6): 226-233.
ZHANG Yonghui, ZHANG Yapu, PAN Chao, et al. Optimization and evaluation method of grid-connected distributed power supply considering source-storage characteristics[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 226-233.
[20]
卫东鸿鹏. 考虑风电消纳的源-荷协同优化调度策略[J]. 发电技术2020, 41(2): 126-130.
LI Weidong, HE Hongpeng. Source-load cooperative optimization dispatch strategy considering wind power accommodation[J]. Power Generation Technology, 2020, 41(2): 126-130.
[21]
国庆晓娟. 基于层次分析法的孤立微电网多目标优化运行[J]. 电力系统保护与控制2018, 46(10): 17-23.
LI Guoqing, ZHAI Xiaojuan, Multi-objective optimal operation of isoland micro-grid based on analytic hierarchy process[J]. Power System Protection and Control, 2018, 46(10): 17-23.
[22]
春波航行,等. 基于改进粒子群算法的储能系统优化运行[J]. 华北电力大学学报2020, 47(2): 95-102, 110.
DAI Hang, WANG Chunbo, LI Hangxing, et al. Optimal operation of energy storage system based on improved particle swarm optimization[J]. Journal of North China Electric Power University, 2020, 47(2): 95-102, 110.
[23]
革非鹏坤. 考虑风电接入的电力系统鲁棒经济优化调度[J]. 电力建设2021, 42(10): 101-109.
QIU Gefei, ZHANG Pengkun, HE Piao. Economic dispatch of power system considering wind power integration[J]. Electric Power Construction, 2021, 42(10): 101-109

基金

国家青年科学基金项目(51407013)

PDF(1437 KB)

Accesses

Citation

Detail

段落导航
相关文章

/