基于新型光伏发电系统的子模块电压调制策略

阳鹏飞,张程辉,彭荣楚,陈绍华

分布式能源 ›› 2022, Vol. 7 ›› Issue (4) : 42-47.

PDF(1708 KB)
PDF(1708 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (4) : 42-47. DOI: 10.16513/j.2096-2185.DE.2207406
应用技术

基于新型光伏发电系统的子模块电压调制策略

作者信息 +

Sub-Module Voltage Modulation Strategy Based on A New Photovoltaic Power Generation System

Author information +
文章历史 +

本文亮点

现有的二、三电平变换器容量有限,而模块化多电平换流器(modular multilevel converter,MMC)独特的级联扩展能力,使得其满足大功率、高电压光伏发电场所的要求,MMC结合到光伏发电系统中成为一种新趋势。将光伏组件直接并在MMC子模块中的新拓扑相较于两级式二、三电平光伏逆变系统少了DC/DC环节,大幅度提高了并网系统容量和电压,但是系统的稳定性大大降低,特别是光伏组件在局部阴影条件下的最大功率点电压不均衡以及MMC子模块电压不稳定成为一个难题,针对这个问题进行子模块的调制策略研究,提出一种不受MMC输出影响的独立调制策略。分析子模块电容电压与MMC输出的关系,将子模块电压稳定在光伏组件的最大功率点电压处。最后通过仿真验证该调制策略的可行性,结果证明该控制策略不仅提高了光伏利用率,还能对MMC子模块起到稳压保护作用,整个光伏并网系统对电网的谐波污染也更少。

HeighLight

The capacity of existing two-level and three-level converters is limited, and the unique cascading expansion ability of modular multilevel converter (MMC) makes it meet the requirements of high-power and high-voltage photovoltaic power generation sites. The combination of MMC into photovoltaic power generation system has become a new trend. Compared with the new topology of the two-stage two-level and three-level photovoltaic inverter system, the new topology of the photovoltaic module directly combined with the MMC sub-module has less DC/DC link, which greatly improves the capacity and voltage of the grid-connected system, but the stability of the system is greatly reduced. In particular, the voltage imbalance of the maximum power point and the voltage instability of the MMC submodule in the condition of local shadow become a difficult problem. To solve this problem, the modulation strategy of the submodule is studied, and an independent modulation strategy that is not affected by the MMC output is proposed. The relationship between the capacitor voltage of the submodule and the output of the MMC is analyzed, and the voltage of the submodule is stabilized at the maximum power point voltage of the PV module. Finally, the simulation verifies that the modulation strategy is feasible. The results show that the control strategy not only improves the photovoltaic utilization rate, but also plays a role in voltage regulation protection for the MMC sub-module, and the whole photovoltaic grid-connected system has less harmonic pollution to the power grid.

引用本文

导出引用
阳鹏飞, 张程辉, 彭荣楚, . 基于新型光伏发电系统的子模块电压调制策略[J]. 分布式能源. 2022, 7(4): 42-47 https://doi.org/10.16513/j.2096-2185.DE.2207406
Pengfei YANG, Chenghui ZHANG, Rongchu PENG, et al. Sub-Module Voltage Modulation Strategy Based on A New Photovoltaic Power Generation System[J]. Distributed Energy Resources. 2022, 7(4): 42-47 https://doi.org/10.16513/j.2096-2185.DE.2207406
中图分类号: TK51   

参考文献

[1]
小进学业蓉蓉,等. 复杂光照环境下光伏阵列输出特性研究[J]. 中国电机工程学报2011, 31(): 162-167.
摘要
S1
WU Xiaojin, WEI Xueye, YU Rongrong, et al. Study of output characteristics of PV array under complicated illumination environment[J]. Proceedings of the CSEE, 2011, 31(): 162-167.
S1
[2]
DU C, AGNEHOLM E, OLSSON G. VSC-HVDC system for industrial plants with onsite generators[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1359-1366.
[3]
林壮国杰,等. 基于MMC技术的光伏并网逆变器原理及仿真研究[J]. 电力系统保护与控制2013, 41(21): 78-85.
JIA Linzhuang, FENG Lin, LI Guojie, et al. Research on the principle and simulation of grid-connected PV inverter based on MMC[J]. Power System Protection and Control, 2013, 41(21): 78-85.
[4]
晓军卫星,等. 混合型模块化多电平换流器解析建模与功率运行区间分析[J]. 电力系统自动化2018, 42(7): 76-84.
LU Xiaojun, XIANG Wang, LIN Weixing, et al. Analysis on analytical modeling and power operating zone of hybrid modular multilevel converter[J]. Automation of Electric Power Systems, 2018, 42(7): 76-84.
[5]
JORDEHI A R. Maximum power point tracking in photov-oltaic (PV)systems: A review of different approaches[J]. R-enewable & Sustainable Energy Reviews, 2016, 65: 1127-1138.
[6]
SUBUDHI B, PRADHAN R. A comparative study on maximum power point tracking techniques for photovoltaic power systems[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 89-98.
[7]
RAJASEKAR S, GUPTA R. Solar photovoltaic power conversion using modular multilevel converter[C]//2012 Students Conference on Engineering and Systems. IEEE, 2012: 1-6.
[8]
彦哲婷婷. 三相LCL光伏并网逆变器的新型入网控制策略[J]. 控制工程2018, 25(8): 1511-1515.
LI Yanzhe, BAO Tingting. A novel admission control strategy for three-phase photovoltaic grid-connected inverters based on LCL filter[J]. Control Engineering, 2018, 25(8): 1511-1515.
[9]
喜长守道,等. 模块化多电平换流器的无差拍控制策略[J]. 中国电机工程学报2017, 37(06): 1753-1764.
RONG Fei, GONG Xichang, HUANG Shoudao, et al. The deadbeat control strategy of modular multilevel converter[J]. Proceedings of the CSEE, 2017, 37(06): 1753-1764.
[10]
ALHARBI M, ISIK S, BHATTACHARYA S. Reliability comparison and evaluation of MMC based HVDC systems[C]//2018 IEEE Electronic Power Grid (eGrid). IEEE, 2018: 1-5.
[11]
婉韵守道敬伟,等. 模块化多电平换流器冗余运行控制策略研究[J]. 电力电子技术2015, 49(6): 7-11.
LUO Wanyun, HUANG Shoudao, HU Jingwei, et al. Research on redundant operation control strategy of modular multilevel converter[J]. Power Electronics Technology, 2015, 49(6): 7-11.
[12]
宝安风雷. 模块化多电平换流器模块冗余优化配置方法[J]. 电力自动化设备2015, 35(1): 13-19.
WANG Baoan, TAN Fenglei, SHANG Jiao. Modular redundancy optimization configuration method of modular multilevel converter[J]. Electric Power Automation Equipment, 2015, 35(1): 13-19.
[13]
,等. MMC型光伏并网逆变器无差拍控制策略[J]. 电力科学与工程2017, 33(9): 8-14.
WANG Jian, WANGg Yi, HU Can, et al. Deadbeat control strategy of MMC photovoltaic grid-connected inverter[J]. Electric Power Science and Engineering, 2017, 33(9): 8-14.
[14]
锐智. 模块化多电平变流器输出电流及电压波形改善研究[D]. 长沙:湖南大学,2016.
HE Ruizhi. Research on the improvement of output current and voltage waveform of modular multilevel converter[D]. Changsha: Hunan University, 2016.
[15]
敏渊. 模块化多电平换流器子模块故障特性和冗余保护[J]. 电力系统自化2011, 35(16): 94-98, 104.
GUAN Minyuan, XU Zheng. Fault characteristics and redundancy protection of modular multilevel converter sub-module[J]. Power System Automation, 2011, 35(16): 94-98, 104.
[16]
MEI J, XIAO B L, SHEN K, et al. Modular multilevel inverter with new modulation method and its application to photovoltaic grid-connected generator[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5063-5073.
[17]
致清,等. 基于模块化多电平换流器的大型光伏并网系统仿真研究[J]. 中国电机工程学报2013, 33(36):27-33.
YAO Zhiqing, YU Fei, ZHAO Qian, et al. Simulation research on large-scale PV grid-connected systems based on MMC[J]. Proceedings of the CSEE, 2013, 33(36): 27-33.
[18]
SLAM M R, GUO Y G, ZHU J G. Multiple-input multiple-output medium frequency-link based medium voltage inverter for direct grid connection of photovoltaic arrays[C]//2013 International Conference on Electrical Machines and Systems(ICEMS). Busan: IEEE, 2013: 202-207.
[19]
守道. 一种新型模块化多电平光伏并网系统[J]. 中国电机工程学报2015, 35(23): 5976-5984.
RONG Fei, LIU Cheng, HUANG Shoudao. A novel grid-connected PV system based on MMC[J]. Proceedings of the CSEE, 2015, 35(23): 5976-5984.
[20]
雅文国栋,等. 混合背靠背模块化多电平变换器设计[J]. 智慧电力2021, 49(8): 70-76.
HUA Yawen, LI Geng, HAN Guodong, et al. Design of hybrid back-to-back modular multilevel converter[J]. Smart Power, 2021, 49(8): 70-76.

基金

湖南省教育厅科学研究重点项目(21A0361)

PDF(1708 KB)

Accesses

Citation

Detail

段落导航
相关文章

/