基于最优路径的多微网能源调度研究

张羽,李春华,马浩东,付林瑶

分布式能源 ›› 2022, Vol. 7 ›› Issue (5) : 1-8.

PDF(1782 KB)
PDF(1782 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (5) : 1-8. DOI: 10.16513/j.2096-2185.DE.2207501
学术研究

基于最优路径的多微网能源调度研究

作者信息 +

Research on Energy Scheduling of Multi-Microgrid Based on Optimal Path

Author information +
文章历史 +

摘要

为提高清洁能源的利用率和减少能源损耗,提出了基于路径最优的多微电网系统的能源调度策略。单微电网由光伏、风电、蓄电池以及燃气轮机等设备组成。在多微电网并网运行的条件下,建立多微网系统双层优化调度模型。第1层调度以维护费用、燃料费用、蓄电池损耗费用、污染物治理费用及功率交互费用最低为目标,采用群集蜘蛛优化算法求解第1层1个周期内各分布式发电单元的最优出力及总运行成本。第2层调度在第1层调度的优化结果之上考虑各微电网之间以及与大电网之间能量调度的损耗,以各电网之间交互成本最低为目标函数,采用蚁群算法选择损耗最小的最优路径,实现多微网间的能量互济。最后采用基于IEEE 9节点的并网型多微电网系统进行能源调度验证,结果表明:该方法能有效减小各微电网功率互济过程中的能量损耗,节约成本,网损由1 379 kW降低为905 kW,成本由17 578元降低为13 443元。

Abstract

To improve the utilization rate of clean energy and reduce energy losses, an energy dispatch strategy based on path optimality for multi-microgrid system is proposed. The single microgrid is composed of photovoltaic, wind power, storage battery, gas turbine and other equipment. Under the condition that multi-microgrid is connected to the grid, a two-layer optimal scheduling model of multi-microgrid system is established. The objective function of the first-layer scheduling is to minimize the maintenance cost, fuel cost, battery loss cost, pollutant treatment cost and power interaction cost, and the swarming spider optimization algorithm is adoted to solve the optimal output and total operation cost of each distributed generation unit in one cycle of the first layer. Based on the optimization results of the first layer scheduling, the second layer scheduling takes into account the energy scheduling losses between each microgrid and the large grid, and takes the minimum interaction cost between each grid as the objective function, adopts the ant colony algorithm to select the optimal path with the minimum loss, so as to realize the energy exchange among the multi-microgrids. Finally, a grid-connected multi-microgrid system based on IEEE 9-node is used for energy scheduling verification. The results show that the proposed method can effectively reduce the energy loss in the process of power mutual supply of each microgrid, and save the cost. The network loss is reduced from 1 379 kW to 905 kW, and the cost is reduced from 17 578 yuan to 13 443 yuan.

关键词

多微网 / 群集蜘蛛优化算法 / 双层调度 / 最优路径 / 能量互济

Key words

multi-microgrid / swarming spider optimization algorithm / hierarchical scheduling / optimal path / mutual energy exchange

引用本文

导出引用
张羽, 李春华, 马浩东, . 基于最优路径的多微网能源调度研究[J]. 分布式能源. 2022, 7(5): 1-8 https://doi.org/10.16513/j.2096-2185.DE.2207501
Yu ZHANG, Chunhua LI, Haodong MA, et al. Research on Energy Scheduling of Multi-Microgrid Based on Optimal Path[J]. Distributed Energy Resources. 2022, 7(5): 1-8 https://doi.org/10.16513/j.2096-2185.DE.2207501
中图分类号: TM73   

参考文献

[1]
TSOURAKIS G, NOMIKOS B M, VOURNAS C D. Contribution of doubly fed wind generators to oscillation damping[J]. IEEE Trans. on Energy Conversion, 2009, 24(3): 783-791.
[2]
NEGRA N B, HOLMSTROM O, BAK-JENSEN B, et al. Aspects of relevance in offshore wind farm reliability assessment[J]. IEEE Trans. on Energy Conversion, 2007, 22(1): 159-166.
[3]
YUAN B, ZHOU M, LI G, et al. Stochastic small-signal stability of power systems with wind power generation[J]. IEEE Trans. on Power Systems, 2015, 30(4): 1680-1689.
[4]
MIAO Z, FAN L, OSBORN D, et al. Control of DFIG-based wind generation to improve interarea oscillation damping[J]. IEEE Trans. on Energy Conversion, 2009, 24(2): 415-422.
[5]
陈莉伟,姚方,马光辉. 考虑源荷交互的独立微电网分层优化调度[J]. 电网与清洁能源2021, 37(9): 83-91.
CHEN Liwei, YAO Fang, MA Guanghui. Hierarchical optimal scheduling of independent microgrid considering source-charge interaction[J]. Power System and Clean Energy, 2021, 37(9): 83-91.
[6]
高松,何俊,杨松坤,等. 基于交替方向乘子法的多微电网能量共享方法研究[J]. 电网与清洁能源2022, 38(6): 113-120.
GAO Song, HE Jun, YANG Songkun, et al. Research on energy sharing method of multi-microgrid based on alternating direction multiplier method[J]. Power System and Clean Energy, 222, 38(6): 113-120.
[7]
江润洲,邱晓燕,李丹. 基于多代理的多微网智能配电网动态博弈模型[J]. 电网技术2014, 38(12): 3321-3327.
JIANG Runzhou, QIU Xiaoyan, LI Dan. Dynamic game model of multi-micro grid intelligent distribution network based on multi-agent[J]. Power Grid Technology, 2014, 38(12): 3321-3327.
[8]
赵琳. 基于多目标进化优化的多微网系统经济调度[D]. 徐州:中国矿业大学,2019.
ZHAO Lin. Economic scheduling of multi-micro network system based on multi-objective evolutionary optimization[D]. Xuzhou: China University of Mining and Technology, 2019.
[9]
刘洋,艾欣,胡鹏,等. 考虑功率交互与需求响应的多微网经济调度[J]. 现代电力2020, 37(6): 605-612.
LIU Yang, AI Xin, HU Peng, et al. Economic scheduling of multi-micro grid considering power interaction and demand response[J]. Modern Electric Power, 2020, 37(6): 605-612.
[10]
孙黎霞,鞠平,白景涛,等. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术2020, 41(1): 64-72.
SUN Lixia, JU Ping, BAI Jingtao, et al. Multi-objective economic optimal operation of microgrid based on combined cooling, heating and power considering battery life[J]. Power Generation Technology, 2020, 41(1): 64-72.
[11]
黄柯蒙,刘继春. 计及需求响应和热电联产的多微电网联盟优化调度方法[J]. 智慧电力2021, 49(6): 107-115.
HUANG Kemeng, LIU Jichun. Optimal dispatch method of multi-microgrid alliance considering demand response & CHP[J]. Smart Power, 2021, 49(6): 107-115.
[12]
WEI Pengbang, CHEN Weidong. Microgrid in China: A review in the perspective of application[J]. Energy Procedia, 2018, 192(158): 6601-6606.
[13]
MAXENCE S, CARLY S, ALLEN L, et al. Social organization of the colonial spider leucauge sp. in the neotropics: Vertical stratification within colonies[J]. The Journal of Arachnology, 2010, 38(3): 446-451.
[14]
CUEVAS E, CIENFUEGOS M. A swarm optimization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(16): 6374-6384.
[15]
肖艳秋,焦建强,乔东平,等. 蚁群算法的基本原理及应用综述[J]. 轻工科技2018, 34(3): 69-72.
XIAO Yanqiu, JIAO Jianqiang, QIAO Dongping, et al. Basic principle and application of ant colony algorithm[J]. Light Industry Science and Technology, 2018, 34(3): 69-72.
[16]
薛文艳,赵江,郝崇清,等. 基于信息素负反馈的超启发式蚁群优化算法[J]. 计算机工程与应用2019, 55(4): 163-172.
XUE Wenyan, ZHAO Jiang, HAO Chongqing, et al. Hyperheuristic ant colony optimization algorithm based on pheromone negative feedback[J]. Computer Engineering and Applications, 2019, 55(4): 163-172.
[17]
张博. 交直流混合微电网潮流计算研究[D]. 锦州:辽宁工业大学,2020.
ZHANG Bo. Study on power flow calculation of AC/DC hybrid microgrid[D]. Jinzhou: Liaoning University of Tech-nology, 2020.

基金

国家自然科学基金项目(51307074)

PDF(1782 KB)

Accesses

Citation

Detail

段落导航
相关文章

/