PDF(1782 KB)
PDF(1782 KB)
PDF(1782 KB)
基于最优路径的多微网能源调度研究
Research on Energy Scheduling of Multi-Microgrid Based on Optimal Path
为提高清洁能源的利用率和减少能源损耗,提出了基于路径最优的多微电网系统的能源调度策略。单微电网由光伏、风电、蓄电池以及燃气轮机等设备组成。在多微电网并网运行的条件下,建立多微网系统双层优化调度模型。第1层调度以维护费用、燃料费用、蓄电池损耗费用、污染物治理费用及功率交互费用最低为目标,采用群集蜘蛛优化算法求解第1层1个周期内各分布式发电单元的最优出力及总运行成本。第2层调度在第1层调度的优化结果之上考虑各微电网之间以及与大电网之间能量调度的损耗,以各电网之间交互成本最低为目标函数,采用蚁群算法选择损耗最小的最优路径,实现多微网间的能量互济。最后采用基于IEEE 9节点的并网型多微电网系统进行能源调度验证,结果表明:该方法能有效减小各微电网功率互济过程中的能量损耗,节约成本,网损由1 379 kW降低为905 kW,成本由17 578元降低为13 443元。
To improve the utilization rate of clean energy and reduce energy losses, an energy dispatch strategy based on path optimality for multi-microgrid system is proposed. The single microgrid is composed of photovoltaic, wind power, storage battery, gas turbine and other equipment. Under the condition that multi-microgrid is connected to the grid, a two-layer optimal scheduling model of multi-microgrid system is established. The objective function of the first-layer scheduling is to minimize the maintenance cost, fuel cost, battery loss cost, pollutant treatment cost and power interaction cost, and the swarming spider optimization algorithm is adoted to solve the optimal output and total operation cost of each distributed generation unit in one cycle of the first layer. Based on the optimization results of the first layer scheduling, the second layer scheduling takes into account the energy scheduling losses between each microgrid and the large grid, and takes the minimum interaction cost between each grid as the objective function, adopts the ant colony algorithm to select the optimal path with the minimum loss, so as to realize the energy exchange among the multi-microgrids. Finally, a grid-connected multi-microgrid system based on IEEE 9-node is used for energy scheduling verification. The results show that the proposed method can effectively reduce the energy loss in the process of power mutual supply of each microgrid, and save the cost. The network loss is reduced from 1 379 kW to 905 kW, and the cost is reduced from 17 578 yuan to 13 443 yuan.
多微网 / 群集蜘蛛优化算法 / 双层调度 / 最优路径 / 能量互济
multi-microgrid / swarming spider optimization algorithm / hierarchical scheduling / optimal path / mutual energy exchange
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
陈莉伟,姚方,马光辉. 考虑源荷交互的独立微电网分层优化调度[J]. 电网与清洁能源,2021, 37(9): 83-91.
|
| [6] |
高松,何俊,杨松坤,等. 基于交替方向乘子法的多微电网能量共享方法研究[J]. 电网与清洁能源,2022, 38(6): 113-120.
|
| [7] |
江润洲,邱晓燕,李丹. 基于多代理的多微网智能配电网动态博弈模型[J]. 电网技术,2014, 38(12): 3321-3327.
|
| [8] |
赵琳. 基于多目标进化优化的多微网系统经济调度[D]. 徐州:中国矿业大学,2019.
|
| [9] |
刘洋,艾欣,胡鹏,等. 考虑功率交互与需求响应的多微网经济调度[J]. 现代电力,2020, 37(6): 605-612.
|
| [10] |
孙黎霞,鞠平,白景涛,等. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术,2020, 41(1): 64-72.
|
| [11] |
黄柯蒙,刘继春. 计及需求响应和热电联产的多微电网联盟优化调度方法[J]. 智慧电力,2021, 49(6): 107-115.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
肖艳秋,焦建强,乔东平,等. 蚁群算法的基本原理及应用综述[J]. 轻工科技,2018, 34(3): 69-72.
|
| [16] |
薛文艳,赵江,郝崇清,等. 基于信息素负反馈的超启发式蚁群优化算法[J]. 计算机工程与应用,2019, 55(4): 163-172.
|
| [17] |
张博. 交直流混合微电网潮流计算研究[D]. 锦州:辽宁工业大学,2020.
|
/
| 〈 |
|
〉 |