PDF(2329 KB)
PDF(2329 KB)
PDF(2329 KB)
基于改进LMS算法的谐波电流检测
Harmonic Current Detection Based on Improved LMS Algorithm
为了提升谐波电流的检测效果,使有源滤波器(active power filter,APF)能更好地消除谐波,首先在APF的基础上,采用固定步长最小均方算法(least mean square,LMS)的同时嵌入低通滤波器进行自适应谐波电流检测,然后采用麻雀搜索算法(sparrow search algorithm,SSA)对滤波的参数进行改进,接着通过改变负载参数值,来验证改进后的LMS算法在负载取不同值下同样适用,最后使用Matlab搭建仿真模型,并在模型中对比了固定步长LMS算法、SSA算法、粒子群算法(particle swarm optimization,PSO)这3种不同方法改进滤波参数的仿真效果,仿真结果表明使用SSA算法来优化参数效果最好,可使流经电网的电流达到只有基波电流的水平,并将电流的总谐波失真率降低到5%以下,满足IEEE标准,使电流的谐波含量降低,系统更加稳定,同时也表明了该方法的适用性和可行性。
In order to improve the detection effect of harmonic current and enable the active filter (APF) to better eliminate harmonics, this paper firstly uses a fixed-step minimum least mean square (LMS) algorithm on the basis of APF and embeds a low-pass filter. Then use the sparrow search algorithm (SSA) to improve the filtering parameters, and then change the load parameter value to verify that the improved LMS algorithm is also applicable under different load values, and finally by using Matlab a simulation model was built, and the three different methods of fixed-step LMS algorithm, SSA algorithm, and particle swarm algorithm (PSO) were compared in the model to improve the simulation effect of filtering parameters. The simulation results show that the SSA algorithm is used to optimize the parameters. It can make the current flowing through the power grid reach the level of only the fundamental current, and reduce the total harmonic distortion (THD) of the current to less than 5%, which meets the IEEE standard, reduces the harmonic content of the current, and makes the system more stable. The applicability and feasibility of the method are also shown.
谐波检测 / 最小均方(LMS)算法 / 麻雀搜索(SSA)算法 / 基波电流
harmonic detection / least mean square (LMS) algorithm / sparrow search algorithm (SSA) / fundamental current
| [1] |
杨立军,毛宇阳,杨志,等. 高性能谐波电流检测及控制方法[J]. 电力电子技术,2019, 53(8): 1-3.
|
| [2] |
张建忠,耿治,徐帅,等. 一种有源电力滤波器的改进自适应谐波检测算法[J]. 电工技术学报,2019, 34(20): 4323-4333.
|
| [3] |
王清亮,应欣峰,宋曦,等. 基于ip-iq法的改进谐波电流检测方法[J]. 电子测量技术,2022, 45(6): 72-78.
|
| [4] |
李翔. 有源电力滤波器谐波检测与抑制方法研究[D]. 陕西:西安科技大学,2020.
|
| [5] |
彭咏龙,张坤锋,李亚斌,等. 基于自适应算法的谐波检测方法研究[J]. 电测与仪表,2018, 5(55): 6-9.
|
| [6] |
|
| [7] |
刘倩倩. 自适应滤波算法及其在电力谐波检测的应用[D]. 成都:西南交通大学,2018.
|
| [8] |
|
| [9] |
叶朋,张东洋,李广剑,等. 基于改进LMS算法的引信自适应去噪声研究[J]. 火力与指挥控制,2020, 45(10): 63-66.
|
| [10] |
白群,赵闻蕾. 基于自适应滤波算法的牵引网谐波电流检测[J]. 大连交通大学学报,2021, 6(42): 111-115.
|
| [11] |
张展,王维,史松林,等. 基于改进双曲正切函数的LMS谐波电流检测算法[J]. 武汉大学学报(工学版), 2020, 53(12): 1085-1090.
|
| [12] |
|
| [13] |
|
| [14] |
王亚军. 基于变步长LMS算法的谐波电流检测与治理研究[D]. 大庆:东北石油大学,2021.
|
| [15] |
|
| [16] |
邵文权,徐嘉鹏,卫晓辉,等. 采用PI+重复控制策略的配电网有源电流消弧方案[J]. 西安工程大学学报,2022, 36(3): 1-8.
|
| [17] |
李鹏,丁倩雯. 基于麻雀算法优化的OSTU分割算法[J]. 电子测量技术,2021, 44(19): 148-154.
|
| [18] |
戈一航,杨光永,徐天奇,等. 基于SSA优化PID在移动机器人路径跟踪中的研究[J]. 国外电子测量技术,2021, 40(09): 64-69.
|
/
| 〈 |
|
〉 |