PDF(1932 KB)
PDF(1932 KB)
PDF(1932 KB)
双碳背景下CCHP系统运行策略优化
Optimization of the CCHP System Operation Strategy Under the Background of Carbon Peaking and Carbon Neutrality
冷热电三联供(combined cooling heating and power,CCHP)系统有着较高的一次能源利用率、较小的环境污染以及较高的经济性等优点,可有效减轻目前困扰全球的环境污染问题,是社会经济、环境可持续发展的需要,也被认为是实现双碳目标的手段之一。随着我国3060双碳目标的提出和国内碳交易市场的发展,碳排放问题势必会成为影响CCHP系统运行策略的一个重大因素。为解决在双碳背景下的CCHP系统运行策略优化问题,通过Matlab软件建立CCHP系统的数学模型,分别在碳排放价格与碳排放指标这2种不同约束条件下,以运行成本最低为目标,采用非线性规划法,优化CCHP系统的运行策略,并通过对某建筑的CCHP系统的负荷计算,验证了该数学模型在不同碳排放约束条件下都可很好地提供合适的运行策略,同时也为CCHP系统在双碳背景下的应用与发展提供了参考。
Combined cooling heating and power (CCHP) system has the advantages of high primary energy utilization rate, small environmental pollution and high economy, which can fully and effectively reduce the environmental pollution problems affecting the whole world, which is the need of social economy and environmental sustainable development, and is also considered as one of the means to achieve the carbon peaking and carbon neutrality goal. In recent years, with the proposal of China's carbon peaking and carbon neutrality target and the development of the domestic carbon trading market, the carbon emission problem will become a major factor affecting the operation strategy of CCHP system. In order to solve the optimization problem of CCHP system in carbon peaking and carbon neutrality background, we use the Matlab to establish a mathematical model of CCHP system.Under two different constraints of carbon emission price and carbon emission index, the model uses the nonlinear programming method to optimize the CCHP system to achieve the lowest operating cost.Through the load calculation of the CCHP system in a certain building, it is verified that the model can provide a suitable operation strategy under different carbon emission constraints, and also provide a reference for the application and development of the CCHP system in the background of carbon peaking and carbon neutrality.
冷热电联产(CCHP) / 分布式能源系统 / 运行策略优化 / 碳排放
combined cooling heating and power (CCHP) / distributed energy systems / run strategy optimization / carbon emission
| [1] |
庄贵阳. 我国实现“双碳”目标面临的挑战及对策[J]. 人民论坛,2021(18): 50-53.
|
| [2] |
国旭涛,蔡洁聪,韩高岩,等. 分布式能源技术与发展现状[J]. 分布式能源,2019, 4(1): 52-59.
|
| [3] |
李伟,章维维. 冷热电三联供系统运行方案的比较分析[J]. 分布式能源,2017, 2(3): 45-49.
|
| [4] |
解鸣,任德财,濮晓宙,等. 冷热电三联供系统的发展现状和应用综述[J]. 制冷,2019, 38(1): 63-69.
|
| [5] |
朱成章. 美国冷热电联产纲领及启示[J]. 中国电力,2000, 53(9): 93-96.
|
| [6] |
|
| [7] |
|
| [8] |
程静,谭智钢,岳雷. 考虑负荷综合需求响应的CCHP-SESS双层优化配置[J/OL]. 电网技术:1-13[2022-08-25].
|
| [9] |
汤翔鹰,胡炎,耿琪,徐新星. 考虑多能灵活性的综合能源系统多时间尺度优化调度[J]. 电力系统自动化,2021, 45(4): 81-90.
|
| [10] |
贺庆,常大伟,张俊礼,等. 天然气冷热电联产系统区间负荷调度策略优化[J]. 动力工程学报,2022, 42(4): 365-371.
|
| [11] |
周守军,马聪聪. 冷热电三联供系统蓄能装置优化运行策略分析[J]. 建筑热能通风空调,2022, 41(2): 13-17
|
| [12] |
孙黎霞,鞠平,白景涛,等. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术,2020, 41(1): 64-72.
|
| [13] |
慕明良,李守茂,孟祥鹤,等. 考虑灵活性的冷热电联供型微网优化调度[J]. 智慧电力,2020, 48(3): 39-46, 95.
|
| [14] |
王子铭,孙亮,孙立国,等. 基于相变储能热阻模型的CCHP型微能源网优化调度[J]. 东北电力大学学报,2022, 42(1): 96-103.
|
| [15] |
杨晓辉,张柳芳,吴龙杰,等. 含考虑IDR的冷热电联供微网的主动配电网经济优化调度[J]. 电力系统保护与控制,2022, 50(3): 19-28.
|
| [16] |
王智,陶鸿俊,张玲. 冷热电联供系统多时间尺度滚动优化运行方法研究[J]. 动力工程学报,2022, 42(3): 276-285.
|
| [17] |
严刚,郑逸璇,王雪松,等. 基于重点行业/领域的我国碳排放达峰路径研究[J]. 环境科学研究,2022, 35(2): 309-319.
|
| [18] |
张莹,黄颖利. 碳中和实践的国际经验与中国路径[J]. 西南金融,2022(9): 94-106.
|
| [19] |
覃盈盈. “双碳”目标下中国碳税开征的逻辑起点、国际借鉴和政策设计[J]. 西南金融,2022(8): 27-42.
|
| [20] |
亿科环境. 中国生命周期基础数据库(CLCD) [DB/OL]. (2012-09-05) [2014-10-30].
|
| [21] |
2022年5月碳排放权交易市场动态[J]. 造纸信息,2022(6): 18-20.
Dynamics of the carbon emission trading market in May 2022[J]. China Paper Newsletters, 2022 (6): 18-20.
|
| [22] |
IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. (2019-05-12)[2021-07-10].
|
/
| 〈 |
|
〉 |