双碳背景下CCHP系统运行策略优化

王钟震,乔春珍,刘天笑,李昭君,刘星雨,赵睿杰,万逵芳

分布式能源 ›› 2022, Vol. 7 ›› Issue (5) : 17-22.

PDF(1932 KB)
PDF(1932 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (5) : 17-22. DOI: 10.16513/j.2096-2185.DE.2207503
学术研究

双碳背景下CCHP系统运行策略优化

作者信息 +

Optimization of the CCHP System Operation Strategy Under the Background of Carbon Peaking and Carbon Neutrality

Author information +
文章历史 +

摘要

冷热电三联供(combined cooling heating and power,CCHP)系统有着较高的一次能源利用率、较小的环境污染以及较高的经济性等优点,可有效减轻目前困扰全球的环境污染问题,是社会经济、环境可持续发展的需要,也被认为是实现双碳目标的手段之一。随着我国3060双碳目标的提出和国内碳交易市场的发展,碳排放问题势必会成为影响CCHP系统运行策略的一个重大因素。为解决在双碳背景下的CCHP系统运行策略优化问题,通过Matlab软件建立CCHP系统的数学模型,分别在碳排放价格与碳排放指标这2种不同约束条件下,以运行成本最低为目标,采用非线性规划法,优化CCHP系统的运行策略,并通过对某建筑的CCHP系统的负荷计算,验证了该数学模型在不同碳排放约束条件下都可很好地提供合适的运行策略,同时也为CCHP系统在双碳背景下的应用与发展提供了参考。

Abstract

Combined cooling heating and power (CCHP) system has the advantages of high primary energy utilization rate, small environmental pollution and high economy, which can fully and effectively reduce the environmental pollution problems affecting the whole world, which is the need of social economy and environmental sustainable development, and is also considered as one of the means to achieve the carbon peaking and carbon neutrality goal. In recent years, with the proposal of China's carbon peaking and carbon neutrality target and the development of the domestic carbon trading market, the carbon emission problem will become a major factor affecting the operation strategy of CCHP system. In order to solve the optimization problem of CCHP system in carbon peaking and carbon neutrality background, we use the Matlab to establish a mathematical model of CCHP system.Under two different constraints of carbon emission price and carbon emission index, the model uses the nonlinear programming method to optimize the CCHP system to achieve the lowest operating cost.Through the load calculation of the CCHP system in a certain building, it is verified that the model can provide a suitable operation strategy under different carbon emission constraints, and also provide a reference for the application and development of the CCHP system in the background of carbon peaking and carbon neutrality.

关键词

冷热电联产(CCHP) / 分布式能源系统 / 运行策略优化 / 碳排放

Key words

combined cooling heating and power (CCHP) / distributed energy systems / run strategy optimization / carbon emission

引用本文

导出引用
王钟震, 乔春珍, 刘天笑, . 双碳背景下CCHP系统运行策略优化[J]. 分布式能源. 2022, 7(5): 17-22 https://doi.org/10.16513/j.2096-2185.DE.2207503
Zhongzhen WANG, Chunzhen QIAO, Tianxiao LIU, et al. Optimization of the CCHP System Operation Strategy Under the Background of Carbon Peaking and Carbon Neutrality[J]. Distributed Energy Resources. 2022, 7(5): 17-22 https://doi.org/10.16513/j.2096-2185.DE.2207503
中图分类号: TK01; TM73   

参考文献

[1]
庄贵阳. 我国实现“双碳”目标面临的挑战及对策[J]. 人民论坛2021(18): 50-53.
ZHUANG Guiyang. Challenges and countermeasures for China to achieve the goal of ”Carbon Peaking and Carbon Neutrality”[J]. People's Forum, 2021(18): 50-53.
[2]
国旭涛,蔡洁聪,韩高岩,等. 分布式能源技术与发展现状[J]. 分布式能源2019, 4(1): 52-59.
GUO Xutao, CAI Jiecong, HAN Gaoyan, et al. Technologies and development status for distributed energy resources[J]. Distributed Energy, 2019, 4(1): 52-59.
[3]
李伟,章维维. 冷热电三联供系统运行方案的比较分析[J]. 分布式能源2017, 2(3): 45-49.
LI Wei, ZHANG Weiwei. Comparative analysis of operation scheme for CCHP system[J]. Distributed Energy, 2017, 2(3): 45-49.
[4]
解鸣,任德财,濮晓宙,等. 冷热电三联供系统的发展现状和应用综述[J]. 制冷2019, 38(1): 63-69.
JIE Ming, REN Decai, PU Xiaozhou, et al. Summary of development and application of CCHP system[J]. Refrigeration, 2019, 38(1): 63-69.
[5]
朱成章. 美国冷热电联产纲领及启示[J]. 中国电力2000, 53(9): 93-96.
ZHU Chengzhang. Guiding principle for and enlightenment from coolant, heat and power in USA[J]. Electric Power, 2000, 53(9): 93-96.
[6]
DONALD R H, MARC R. Environmental and health benefits of district cooling using utility-based cogeneration in Ontario, Canada[J]. Energy, 1996, 21(12): 1135-1146.
[7]
MAIDMENT G G, ZHAO X, RIFFAT S B. Combined cooling and heating using a gas engine in a supermarket[J]. Applied Energy, 2001(68): 321-335.
[8]
程静,谭智钢,岳雷. 考虑负荷综合需求响应的CCHP-SESS双层优化配置[J/OL]. 电网技术:1-13[2022-08-25].
CHENG Jing, TAN Zhigang, YUE Lei. CCHP-SESS bi-layer optimal configuration considering load comprehensive demand response [J/OL]. Power System Technology: 1-13[2022-08-25].
[9]
汤翔鹰,胡炎,耿琪,徐新星. 考虑多能灵活性的综合能源系统多时间尺度优化调度[J]. 电力系统自动化2021, 45(4): 81-90.
TANG Xiangying, HU Yan, GENG Qi, XU Xinxing. Multi-time-scale optimal scheduling of integrated energy system considering multi-energy flexibility[J]. Automation of Electric Power Systems, 2021, 45(4): 81-90.
[10]
贺庆,常大伟,张俊礼,等. 天然气冷热电联产系统区间负荷调度策略优化[J]. 动力工程学报2022, 42(4): 365-371.
HE Qing, CHANG Dawei, ZHANG Junli, et al. Optimization of interval load scheduling strategy for a CCHP system using natural gas [J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 365-371.
[11]
周守军,马聪聪. 冷热电三联供系统蓄能装置优化运行策略分析[J]. 建筑热能通风空调2022, 41(2): 13-17
ZHOU Shoujun, MA Congcong. Optimal operation strategy of the energy storage unit in combined cooling, heating and power supply system during transition seasons[J]. Building Energy & Environment, 2022, 41(2): 13-17.
[12]
孙黎霞,鞠平,白景涛,等. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术2020, 41(1): 64-72.
SUN Lixia, JU Ping, BAI Jingtao, et al. Multi-objective economic optimal operation of microgrid based on combined cooling, heating and power considering battery life[J]. Power Generation Technology, 2020, 41(1): 64-72.
[13]
慕明良,李守茂,孟祥鹤,等. 考虑灵活性的冷热电联供型微网优化调度[J]. 智慧电力2020, 48(3): 39-46, 95.
MU Mingliang, LI Shoumao, MENG Xianghe, et al. Optimal scheduling of CCHP microgrid considering flexibility[J]. Smart Power, 2020, 48(3): 39-46, 95.
[14]
王子铭,孙亮,孙立国,等. 基于相变储能热阻模型的CCHP型微能源网优化调度[J]. 东北电力大学学报2022, 42(1): 96-103.
WANG Ziming, SUN Liang, SUN Liguo, et al. Optimization scheduling of cchp micro-energy network based on phase change energy storage thermal resistance model [J]. Journal of Northeast Electric Power University, 2022, 42(1): 96-103.
[15]
杨晓辉,张柳芳,吴龙杰,等. 含考虑IDR的冷热电联供微网的主动配电网经济优化调度[J]. 电力系统保护与控制2022, 50(3): 19-28.
YANG Xiaohui, ZHANG Liufang, WU Longjie, et al. Economic optimal dispatch of an active distribution network with combined cooling, heating and power microgrids considering integrated demand response [J]. Power System Protection and Control, 2022, 50(3): 19-28.
[16]
王智,陶鸿俊,张玲. 冷热电联供系统多时间尺度滚动优化运行方法研究[J]. 动力工程学报2022, 42(3): 276-285.
WANG Zhi, TAO Hongjun, ZHANG Ling. Research on multi-time scale rolling optimal operation method of combined cooling, heating and power system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(3): 276-285.
[17]
严刚,郑逸璇,王雪松,等. 基于重点行业/领域的我国碳排放达峰路径研究[J]. 环境科学研究2022, 35(2): 309-319.
YAN Gang, ZHENG Yixuan, WANG Xuesong, et al. Pathway for carbon dioxide peaking in China based on sectoral analysis [J]. Research of Environmental Sciences, 2022, 35(2): 309-319.
[18]
张莹,黄颖利. 碳中和实践的国际经验与中国路径[J]. 西南金融2022(9): 94-106.
ZHANG Ying, HUANG Yingli. International experiences and China's path of carbon neutrality practices[J]. Southwest Finance, 2022(9): 94-106.
[19]
覃盈盈. “双碳”目标下中国碳税开征的逻辑起点、国际借鉴和政策设计[J]. 西南金融2022(8): 27-42.
TAN Yingying. The logical starting point, international reference and policy design of China's carbon tax collection under the ”Carbon Peaking and Carbon Neutrality” goal[J]. Southwest Finance, 2022(8): 27-42.
[20]
亿科环境. 中国生命周期基础数据库(CLCD) [DB/OL]. (2012-09-05) [2014-10-30].
[21]
2022年5月碳排放权交易市场动态[J]. 造纸信息2022(6): 18-20.
Dynamics of the carbon emission trading market in May 2022[J]. China Paper Newsletters, 2022 (6): 18-20.
[22]
IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. (2019-05-12)[2021-07-10].

基金

国家大学生创新创业训练计划项目(s202210009049)

PDF(1932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/