风电场道路优化设计算法及应用

杨奎滨,杜昊天,王其君,刘平

分布式能源 ›› 2022, Vol. 7 ›› Issue (5) : 56-62.

PDF(9366 KB)
PDF(9366 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (5) : 56-62. DOI: 10.16513/j.2096-2185.DE.2207508
应用技术

风电场道路优化设计算法及应用

作者信息 +

Research and Application of Optimal Road Design Algorithm for Wind Farm

Author information +
文章历史 +

摘要

道路优化与机位点合理排布对风电场建设成本有重要的影响,为了有效降低风电场建设成本,基于Jensen尾流模型优化风机点位,综合考虑Dijkstra法、等高线树搜索法、Prim法,提出了一种基于机位排布的风电场场内道路自动优化方法。在最短通路的原则下,通过改进Prim法得到了更贴近实际工程项目的Y型岔路方案,有效降低了场内道路的工程量和造价。

Abstract

Road optimization and reasonable arrangement of wind turbines have an important impact on the construction cost of wind farms. In order to effectively reduce the construction cost of wind farms, the Jensen wake model in this paper optimizes wind turbine locations, comprehensively considering Dijkstra's method, contour tree search method and Prim method. This paper proposes an automatic optimization method of roads in wind farms based on the arrangement of wind turbines. Under the principle of the shortest path, a Y-shaped fork road scheme that is closer to the actual project is obtained by improving the Prim method, which effectively reduces the engineering volume and cost of the road in the field.

关键词

风电场 / 机位排布 / 自动优化

Key words

wind farm / arrangement of wind turbines / automatic optimization

引用本文

导出引用
杨奎滨, 杜昊天, 王其君, . 风电场道路优化设计算法及应用[J]. 分布式能源. 2022, 7(5): 56-62 https://doi.org/10.16513/j.2096-2185.DE.2207508
Kuibin YANG, Haotian DU, Qijun WANG, et al. Research and Application of Optimal Road Design Algorithm for Wind Farm[J]. Distributed Energy Resources. 2022, 7(5): 56-62 https://doi.org/10.16513/j.2096-2185.DE.2207508
中图分类号: TK83   

参考文献

[1]
刘纲,雷振博,杨微,等. 风机塔架PS-TMD被动控制装置机理分析及参数调谐优化研究[J]. 工程力学2021, 38(12): 137-146.
LIU Gang, LEI Zhenbo, YANG Wei, et al. Mechanism analysis and parameter tuning optimization for wind turbine towers with PS-TMD passive control devices [J]. Engineering Mechanics, 2021, 38(12): 137-146.
[2]
田琳琳,赵宁,武从海. 风电场的机组布局优化研究[J]. 太阳能学报2014, 35(3): 462-468.
TIAN Linlin, ZHAO Ning, WU Conghai. Numerical analysis of the wind farm layout optimization[J]. ACTA Energiae Solaris Sinica, 2014, 35(3): 462-468.
[3]
GUIRGUIS D, ROMERO D A, AMON C H. Toward efficient optimization of wind farm layouts: Utilizing exact gradient information[J]. Applied Energy, 2016, 179: 110-123.
[4]
TURNER S D O, ROMERO D A, ZHANG P Y, et al. A new mathematical programming approach to optimize wind farm layouts[J]. Renewable Energy, 2014, 63: 674-680.
[5]
ARCHER R, NATES G, DONOVAN S, et al. Wind turbine interference in a wind farm layout optimization mixed integer linear programming model[J]. Wind Engineering, 2011, 35(2): 165-175.
[6]
HOU Junyi, YU Lei, FEI Shumin. A high-quality voxel 3D reconstruction system for large scenes based on the branch and bound method[J]. Expert Systems with Applications, 2022, 194: 1-12.
[7]
KIRCHNER-BOSSI N, PORTE-AGEL F. Realistic wind farm layout optimization through genetic algorithms using a Gaussian wake model[J]. Energies, 2018, 11(12): 1-26.
[8]
JENSEN N O. A note on wind generator interaction[M]. Roskilde, Denmark: Rise National Laboratory, 1983.
[9]
KATIC I, HOJSTRUP J, JENSEN N O. A simple model for cluster efficiency[C]//European wind energy association conference and exhibition. Rome, Italy: A. Raguzzi, 1986: 407-410.
[10]
MOSETTI G, POLONI C, DIVIACCO B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(1): 105-116.
[11]
GRADY S A, HUSSAINI M Y, ABDULLAH M M. Placement of wind turbines using genetic algorithms[J]. Renewable energy, 2005, 30(2): 259-270.
[12]
郑弈,谢亚琴. 基于Dijkstra算法改进的飞行器航迹快速规划算法[J]. 电子测量技术2022, 45(12): 73-79.
ZHENG Yi, XIE Yaqin. Improved fast flight path planning algorithm for aircraft based on Dijkstra algorithm [J]. Electronic Measurement Technique, 2022, 45(12): 73-79.
[13]
WAN C, WANG J, YANG G, et al. Optimal micro-siting of wind farms by partice swarm optimization[C]//Proceedings of the International Conference on Swarm Intelligence (ICST 2010). Beijing, China, 2010, 6145: 198-205.
[14]
WAN C, WANG J, YANG G, et al. Optimal micro-siting wind turbines by genetic algorithms based on improved wind and turbine models[C]//Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China. 2009: 5092-5097.

基金

四川省2022年重点研发计划项目(2022YFG0118)

PDF(9366 KB)

Accesses

Citation

Detail

段落导航
相关文章

/