PDF(7343 KB)
PDF(7343 KB)
PDF(7343 KB)
液流电池中碳布对电解液流动影响的试验及模拟
Experiment and Simulation of Effect of Carbon Cloth on Electrolyte Flow in Flow Battery
液流电池内双极板流场结构是影响电堆及系统性能的关键,电极是影响电堆内电解液流动特性的主要因素。为研究液流电池内部电解液的流动状态,使电解液分布更为均匀且有较高的传质效率,设计并搭建液流电池用碳布渗透率试验平台,测试并计算得出多孔介质模型中粘性阻力系数和惯性阻力系数等计算流体力学关键数据。将试验中得到的关键数据结合数值模拟,计算碳布在0.3、0.4和0.5 mm的压缩状态下,电解液在叉指型流场结构中的流动状态。通过试验和模拟结果可看出,随着碳布压缩量增大,单电池的流动阻力急剧增大。因此,电堆在设计中应考虑在保证电化学性能的同时,尽可能地减小电极压缩量,进而提高储能系统效率。通过试验与模拟相结合的研究方法,可对现有的电堆设计方案进行评估分析,从而反馈并修正设计方案。
The flow field structure of bipolar plates in the flow battery is one of the key problems affecting the performance of the stack and the system, and the electrode is the main factor affecting the flow characteristics of electrolyte in the stack. In order to study the flow state of electrolyte in the flow battery, make the electrolyte more uniform and have higher mass transfer efficiency, this paper designed and built a carbon cloth permeability test platform for the flow battery, tested and calculated the viscous resistance coefficient and inertial resistance coefficient in the porous medium model and other key computational fluid dynamics data. Combining the key data obtained from the test with the numerical simulation, the flow state of electrolyte in the interdigital flow field structure was calculated under the compression conditions of 0.3, 0.4 and 0.5 mm of carbon cloth. It can be seen from the test and simulation results that the flow resistance of single battery increases sharply with the increase of carbon cloth compression. Therefore, it should be considered in the design of the stack to reduce the electrode compression as much as possible while ensuring the electrochemical performance, so as to improve the efficiency of the energy storage system. Through the research method of combining experiment and simulation, the existing stack design scheme can be evaluated and analyzed, and the design scheme can be fed back and revised.
液流电池 / 碳布压缩量 / 流动特性 / 试验研究 / 数值模拟
flow battery / compression of carbon cloth / flow characteristics / experimental study / numerical simulation
| [1] |
李铮,郭小江,申旭辉,等. 我国海上风电发展关键技术综述[J]. 发电技术,2022, 43(2): 186-197.
|
| [2] |
郭宴秀,苏建军,马临超,等. 基于IT2FLC的HESS太阳能充电站功率分配策略[J]. 智慧电力,2022, 50(5): 62-68.
|
| [3] |
唐奡,严川伟. 液流电池模拟仿真研究现状与展望[J]. 储能科学与技术,2022, 11(9): 2866-2878.
|
| [4] |
高海. 全钒液流电池模拟仿真及均流设计[D]. 沈阳:东北大学,2017.
|
| [5] |
黄雅琨,刘进一,张筱松. 基于高温质子交换膜燃料电池和全钒液流电池的离网能源系统的配置优化[J]. 发电技术,2022, 43(2): 305-312.
|
| [6] |
|
| [7] |
张华民. 液流电池技术[M]. 北京:化学工业出版社,2015:85-86.
|
| [8] |
|
| [9] |
胡坤,胡婷婷,马海峰. ANSYS Fluent实例详解[M]. 北京:机械工业出版社,2018: 82-83.
|
| [10] |
肖民,刘松岭,靖海国,等. 基于Fluent的过滤器内部流场数值模拟[J]. 舰船科学技术,2022, 44(12): 99-103.
|
| [11] |
|
| [12] |
马军,李爱魁,董波,等. 提高全钒液流电池能量效率的研究进展[J]. 电源技术,2013, 37(8): 1485-1488.
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
/
| 〈 |
|
〉 |