海上风电柔性直流系统变惯性协调控制策略

黄宇昕,倪世杰,赵平,李振兴

分布式能源 ›› 2022, Vol. 7 ›› Issue (6) : 1-10.

PDF(2886 KB)
PDF(2886 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (6) : 1-10. DOI: 10.16513/j.2096-2185.DE.2207601
学术研究

海上风电柔性直流系统变惯性协调控制策略

作者信息 +

Variable Inertia Coordinated Control Strategy for Offshore Wind Power Flexible DC System

Author information +
文章历史 +

摘要

针对大容量海上风电接入电网导致系统惯性下降,频率不稳定风险增大的问题,提出了一种变惯性协调控制策略。该协调控制策略中,网侧换流器采用虚拟惯性控制基础,并根据直流电压改变其惯性系数,从而更有效利用直流电容进行惯性支撑。风场侧换流器根据直流电压变化改变海上电网频率,将岸上频率变化传递到海上风电场,风电机组根据频率的变化率和自身转速,调节惯性系数,实现风机变惯性控制,从而提供更多的惯性支撑功率,减小风机转速恢复阶段输出功率下降。仿真结果表明,所提协调控制策略能够有效提升陆上系统惯性,提高系统频率稳定性。

Abstract

In order to solve the problem of decreasing system inertia and increasing frequency instability risk caused by large capacity offshore wind power connected to the power grid, a variable inertia coordinated control method is proposed. In the coordinated control strategy, the grid side converter adopts the virtual inertia control basis, and changes its inertia coefficient according to the DC voltage, so as to more effectively use the DC capacitor for inertia support. The windfarm side converter changes the frequency of the offshore power grid according to the change of the DC voltage, and transmits the change of the onshore frequency to the offshore wind farm. The wind turbine unit adjusts the inertia coefficient according to the change rate of the frequency and its own speed, so as to provide more inertia support power and reduce the decrease of the output power during the recovery phase of the wind turbine speed. The simulation results show that the proposed coordinated control strategy can effectively enhance the inertia of the land system and improve the frequency stability of the system.

关键词

海上风电 / 柔性直流输电 / 虚拟惯性 / 频率响应 / 协调控制

Key words

offshore wind farm / flexible DC transmission / virtual inertia / frequency response / coordinated control

引用本文

导出引用
黄宇昕, 倪世杰, 赵平, . 海上风电柔性直流系统变惯性协调控制策略[J]. 分布式能源. 2022, 7(6): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2207601
Yuxin HUANG, Shijie NI, Ping ZHAO, et al. Variable Inertia Coordinated Control Strategy for Offshore Wind Power Flexible DC System[J]. Distributed Energy Resources. 2022, 7(6): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2207601
中图分类号: TK81   

参考文献

[1]
迟永宁,梁伟,张占奎,等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报2016, 36(14): 3758-3771.
CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[2]
WANG W, LI Y, CAO Y, et al. Adaptive droop control of VSC-MTDC system for frequency support and power sharing[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1264-1274.
[3]
余浩,肖彭瑶,林勇,等. 大规模海上风电高电压穿越研究进展与展望[J]. 智慧电力2020, 48(3): 30-38.
YU Hao, XIAO Pengyao, LIN Yong, et al. Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J]. Smart Power, 2020, 48(3): 30-38.
[4]
LIU H, CHEN Z. Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 918-926.
[5]
房方,梁栋炀,刘亚娟,等. 海上风电智能控制与运维关键技术[J]. 发电技术2022, 43(2): 175-185.
FANG Fang, LIANG Dongyang, LIU Yajuan, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power[J]. Power Generation Technology, 2022, 43(2): 175-185.
[6]
RAKHSHANI E, RODRIGUEZ P. Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3338-3351.
[7]
ZHU J, BOOTH C D, ADAM G P, et al. Inertia emulation control strategy for VSC-HVDC transmission systems[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1277-1287.
[8]
ZHU J, GUERRERO J M, HUNG W, et al. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems[J]. IET Renewable Power Generation, 2014, 8(7): 740-748.
[9]
FANG J, LI H, TANG Y, et al. Distributed power system virtual inertia implemented by grid-connected power converters[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8488-8499.
[10]
LI Y, ZHANG Z, YANG Y, et al. Coordinated control of wind farm and VSC-HVDC system using capacitor energy and kinetic energy to improve inertia level of power systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 59: 79-92.
[11]
MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control, [J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434.
[12]
WANG S, TOMSOVIC K. Fast frequency support from wind turbine generators with auxiliary dynamic demand control[J]. IEEE Transactions on Power Systems, 34(5): 3340-3348.
[13]
MAHISH P, PRADHAN A K. Distributed synchronized control in grid integrated wind farms to improve primary frequency regulation[J]. IEEE Transactions on Power Systems, 35(1): 362-373.
[14]
LOUKARAKIS E, MARGARIS I, MOUTIS P. Frequency control support and participation methods provided by wind generation[C]//2009 IEEE Electrical Power & Energy Conference (EPEC), 2009: 1-6.
[15]
李宇骏,杨勇,李颖毅,等. 提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J]. 中国电机工程学报2014, 34(34): 6021-6031.
LI Yujun, YANG Yong, LI Yingyi, et al. Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J]. Proceedings of the CSEE, 2014; 34(34): 6021-6031.
[16]
闫家铭,毕天姝,胥国毅,等. 海上风电经VSC-HVDC并网改进频率控制策略[J]. 华北电力大学学报(自然科学版), 2021, 48(2): 11-19.
YAN Jiaming, BI Tianshu, XU Guoyi, et al. Improved frequency control strategy for offshore wind power grid connection via VSC-HVDC [J]. Journal of North China Electric Power University(Natural Science Edition), 2021, 48(2): 11-19.
[17]
杨金刚,袁志昌,李顺昕,等. 经柔性直流输电并网的大型风电场频率控制策略[J]. 电力自动化设备2019, 39(6): 109-114.
YANG Jingang, YUAN Zhichang, LI Shunxin, et al. Frequency control strategy of large-scale wind farm connected with flexible DC transmission[J]. Electrict Power Automation Equipment, 2019, 39(6): 109-114.
[18]
JUNYENT-FERR A, PIPELZADEH Y, GREEN T C. Blending HVDC-link energy storage and offshore wind turbine inertia for fast frequency response[J]. IEEE Transactions On Sustainable Energy, 2015, 6(3): 1059-1066.
[19]
SHEN Z, ZHU J, GE L, et al. Variable-inertia emulation control scheme for VSC-HVDC transmission systems[J]. IEEE Transactions on Power Systems, 2022, 37(1): 629-639.
[20]
LEON A E. Short-term frequency regulation and inertia emulation using an MMC-based MTDC system[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2854-2863.
[21]
宋伟宏,杨林刚,林磊,等. 基于MMC-HVDC的海上风电柔直系统频率波动抑制技术[J]. 高电压技术2021, 47(8): 2760-2770.
SONG Weihong, YANG Lingang, LIN Lei, et al. Frequency fluctuation suppression technology of offshore wind power flexible direct system based on MMC-HVDC [J]. High Voltage Engineering, 2021, 47(8): 2760-2770.
[22]
ZENG X, LIU T, WANG S, et al. Coordinated control of MMC-HVDC system with offshore wind farm for providing emulated inertia support[J]. IET Renewable Power Generation, 2020, 14(5): 673-683.
[23]
刘英培,谢乾,梁海平. 柔性直流输电系统自适应虚拟惯性调频控制策略[J]. 电力系统自动化2021, 45(5): 129-136.
LIU yingpei, XIE Qian, LIANG Haiping. Adaptive virtual inertia frequency modulation control strategy for flexible DC transmission system[J] Automation of Electric Power Systems2021, 45(5): 129-136
[24]
曹立杨. 模块化多电平换流器控制策略研究[D]. 沈阳:沈阳工业大学,2019.
CAO Liyang. Research on control strategy of modular multilevel converter[D]. Shenyang: Shenyang University of Technology, 2019.
[25]
罗徽. MMC型换流器电容电压平衡策略的仿真与设计[D]. 西安:西安科技大学,2017.
LUO Hui. Simulation and design of capacitance voltage balance strategy for MMC[D]. Xi'an: Xi'an University of Science and Technology, 2017.

基金

国家自然科学基金项目(52077120)

PDF(2886 KB)

Accesses

Citation

Detail

段落导航
相关文章

/