基于多模型综合特征选择和LSTM-Attention的短期负荷预测

彭泽森,刘庆珍,张溢

分布式能源 ›› 2022, Vol. 7 ›› Issue (6) : 11-20.

PDF(3747 KB)
PDF(3747 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (6) : 11-20. DOI: 10.16513/j.2096-2185.DE.2207602
学术研究

基于多模型综合特征选择和LSTM-Attention的短期负荷预测

作者信息 +

Short Term Load Forecasting Based on Multi-Model Comprehensive Feature Selection and LSTM-Attention

Author information +
文章历史 +

摘要

为提高电力系统短期负荷预测精度和预测效率,提出一种基于多模型综合特征选择和长短期记忆单元(long short time memory,LSTM)-Attention的短期负荷预测方法。首先,利用随机森林算法、自适应集成(adaptive boosting,AdaBoost)算法及梯度提升树(gradient boosting decision tree,GBDT)算法对原始数据进行初步拟合预测,提取3种算法拟合后的结果来获取特征量与负荷大小的相关系数,从而建立综合相关系数。接着,根据综合相关系数的大小,剔除相关系数较小的特征量,将剩余的特征量与历史负荷大小数据结合构成新的数据集。最后,将新的数据集作为LSTM-Attention预测模型的输入,从而得到待预测日的负荷预测曲线。通过分析所提出的预测方法在某地区负荷数据集的预测结果可知,该方法优于其他预测方法。

Abstract

In order to improve the forecasting accuracy and efficiency of power system short-term load forecasting, this paper proposes a short-term load forecasting method based on multi-model comprehensive feature selection and long short time memory (LSTM)-Attention. Firstly, the random forest algorithm, adaptive boosting (AdaBoost) algorithm and gradient boosting decision tree (GBDT) algorithm are used to preliminarily fit and predict the original data, extract the output results of the three algorithms after fitting, and establish the comprehensive correlation coefficient by using the correlation coefficient between the characteristic quantity and the load size; then, according to the size of the comprehensive correlation coefficient, the feature quantity with smaller correlation coefficient is removed, and the remaining feature quantity is combined with the historical load size data to form a new data set. Finally, the new data set is used as the input of the LSTM-Attention forecasting model, and the load forecasting curve of the day to be predicted is obtained. By analyzing the forecasting results of the proposed forecasting method in the historical load data set of a certain area, it can be seen that the proposed method has higher forecasting accuracy than other methods.

关键词

短期负荷预测 / 多模型 / 特征选择 / 相关系数 / LSTM-Attention

Key words

short term load forecasting / multi-model / feature selection / correlation coefficient / LSTM-Attention

引用本文

导出引用
彭泽森, 刘庆珍, 张溢. 基于多模型综合特征选择和LSTM-Attention的短期负荷预测[J]. 分布式能源. 2022, 7(6): 11-20 https://doi.org/10.16513/j.2096-2185.DE.2207602
Zesen PENG, Qingzhen LIU, Yi ZHANG. Short Term Load Forecasting Based on Multi-Model Comprehensive Feature Selection and LSTM-Attention[J]. Distributed Energy Resources. 2022, 7(6): 11-20 https://doi.org/10.16513/j.2096-2185.DE.2207602
中图分类号: TK01;TM71   

参考文献

[1]
徐扬,张紫涛. 基于遗传模拟退火算法改进BP神经网络的中长期电力负荷预测[J]. 电气技术2021, 22(9): 70-76.
XU Yang, ZHANG Zitao. Medium and long-term power load forecasting based on BP neural network improved by genetic simulated annealing algorithm[J]. Electrical Engineering, 2021, 22(9): 70-76.
[2]
魏震波,余雷. 基于FFT、DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力2022, 50(3): 37-43.
WEI Zhenbo, YU Lei. Short-term load forecasting method based on FFT, DC-HC and LSTM[J]. Smart Power, 2022, 50(3): 37-43.
[3]
刘辉,凌宁青,罗志强,等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力2022, 50(8): 30-37.
LIU Hui, LING Ningqing, LUO Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50(8): 30-37.
[4]
赵洋,王瀚墨,康丽,等. 基于时间卷积网络的短期电力负荷预测[J]. 电工技术学报2022, 37(5): 1242-1251.
ZHAO Yang, WANG Hanmo, KANG Li, et al. Temporal convolution network-based short-term electrical load forecasting[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1242-1251.
[5]
胡聪,徐敏,洪德华,等. 基于集成LSTM模型的数据驱动需求预测[J]. 电力工程技术2022, 41(6): 193-200.
HU Cong, XU Min, HONG Dehua, et al. Data-driven demand prediction based on integrated LSTM model[J]. Electric Power Engineering Technology, 2022, 41(6): 193-200.
[6]
姚国风,李天杰,刘兰芳,等. 基于DAE和LSTM的居民用电负荷预测方法[J]. 控制工程2022, 29(11): 2048-2053.
YAO Guofeng, LI Tianjie, LIU Lanfang, et al. Residential electricity load forecasting method based on DAE and LSTM[J]. Control Engineering of China, 2022, 29(11): 2048-2053.
[7]
朱家贻,刘思蕊,潘楠,等. 一种基于LSTM神经网络的短期用电负荷预测方法[J]. 中国新通信2021, 23(1): 167-168.
ZHU Jiayi, LIU Sirui, PAN Nan, et al. A short term load forecasting method based on LSTM neural network[J]. China New Communications, 2021, 23(1): 167-168.
[8]
魏骜,茅大钧,韩万里,等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程2020, 35(4): 203-209.
WEI Ao, MAO Dajun, HAN Wanli, et al. Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 203-209.
[9]
鲍海波,吴阳晨,张国应,等. 基于特征加权Stacking集成学习的净负荷预测方法[J]. 电力建设2022, 43(9): 104-116.
BAO Haibo, WU Yangchen, ZHANG Guoying, et al. Net load forecasting method based on feature-weighted stacking ensemble learning[J]. Electric Power Construction, 2022, 43(9): 104-116.
[10]
彭文,王金睿,尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术2019, 43(5): 1745-1751.
PENG Wen, WANG Jinrui, YIN Shanqing. Short-term load forecasting model based on Attention-LSTM in electricity market[J]. Power System Technology, 2019, 43(5): 1745-1751.
[11]
王琛,王颖,郑涛,等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报2022, 37(7): 1789-1799.
WANG Chen, WANG Ying, ZHENG Tao, et al. Multi-energy load forecasting in integrated energy system based on ResNet-LSTM network and attention mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1789-1799.
[12]
赵兵,王增平,纪维佳,等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术2019, 43(12): 4370-4376.
ZHAO Bing, WANG Zengping, JI Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370-4376.
[13]
陆继翔,张琪培,杨志宏,等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化2019, 43(8): 131-137.
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137.
[14]
陈川,陈冬林,何李凯. 基于BPNN-EMD-LSTM组合模型的城市短期燃气负荷预测[J]. 安全与环境工程2019, 26(1): 149-154, 169.
CHEN Chuan, CHEN Donglin, HE Likai. Short-term forecast of urban natural gas load based on BPNN-EMD-LSTM combined model[J]. Safety and Environmental Engineering, 2019, 26(1): 149-154, 169.
[15]
王金玉,金宏哲,王海生,等. ISSA优化Attention双向LSTM的短期电力负荷预测[J]. 电力系统及其自动化学报2022, 34(5): 111-117.
WANG Jinyu, JIN Hongzhe, WANG Haisheng, et al. Short-term power load prediction of bidirectional LSTM with ISSA optimization attention mechanism[J]. Proceedings of the CSU-EPSA, 2022, 34(5): 111-117.
[16]
谌东海,王伟,赵昊裔,等. 基于MI+PSO-LSTM的能耗预测模型[J]. 计算机工程与设计2022, 43(10): 2889-2896.
CHEN Donghai, WANG Wei, ZHAO Haoyi, et al. Energy consumption prediction model based on MI+PSO-LSTM[J]. Computer Engineering and Design, 2022, 43(10): 2889-2896.
[17]
赵玮. 采用机器学习的聚类模型特征选择方法比较[J]. 华侨大学学报:自然科学版2017, 38(1): 105-108.
ZHAO Wei. Comparison of feature selection method of clustering model using machine learning[J]. Journal of Huaqiao University: Natural Science, 2017, 38(1): 105-108.
[18]
肖启明,郭谋发. 基于变分模态分解与图信号指标的配电网高阻接地故障识别算法[J]. 电气技术2021, 22(5): 50-55.
XIAO Qiming GUO Moufa. High impedance fault detection algorithm based on variational mode decomposition and graph signal indices in distribution networks[J]. Electrical Engineering, 2021, 22(5): 50-55.
[19]
戴贵洋,綦秀利,余晓晗. 融合人类知识的随机森林特征选择方法研究[J]. 计算机技术与发展2022, 32(7): 155-160.
DAI Guiyang, QI Xiuli, YU Xiaohan. Research on random forecast feature selection method by human knowledge[J]. Computer Technology and Development, 2022, 32(7): 155-160.
[20]
马速良,武建文,袁洋,等. 多振动信息下的高压断路器机械故障随机森林融合诊断方法[J]. 电工技术学报2020, 35(): 421-431.
摘要
S2
MA Suliang, WU Jianwen, YUAN Yang, et al. Mechanical fault fusion diagnosis of high voltage circuit breaker using multi-vibration information based on random forest[J]. Transactions of China Electrotechnical Society, 2020, 35(): 421-431.
S2
[21]
刘琼,田晓梨,花凌锋,等. 基于G-L-R模型的光伏发电功率预测[J]. 电气技术2020, 21(8): 11-15, 21.
LIU Qiong, TIAN Xiaoli, HUA Lingfeng, et al. Photovoltaic power prediction based on G-L-R model[J]. Electrical Engineering, 2020, 21(8): 11-15, 21.
[22]
贾科,宣振文,林瑶琦,等. 基于Adaboost算法的并网光伏发电系统的孤岛检测法[J]. 电工技术学报2018, 33(5): 1106-1113.
JIA Ke, XUAN Zhenwen, LIN Yaoqi, et al. An islanding detection method for grid-connected photovoltaic power system based on adaboost algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1106-1113.
[23]
潘锦业,王苗苗,阚威,等. 基于Adam优化算法和长短期记忆神经网络的锂离子电池荷电状态估计方法[J]. 电气技术2022, 23(4): 25-30, 36.
PAN Jinye, WANG Miaomiao, KAN Wei, et al. State of charge estimation of lithiumion battery based on Adam optimization algorithm and long short-term memory neural network[J]. Electrical Engineering, 2022, 23(4): 25-30, 36.
[24]
时珉,许可,王珏,等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报2021, 36(11): 2298-2305.
SHI Min, XU Ke, WANG Jue, et al. Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305.
[25]
POTONIK P, KERL P, GOVEKAR E. Machine-learning-based multi-step heat demand forecasting in a district heating system[J]. Energy and Buildings, 2021, 233(3): 110673.
[26]
TANG Y, LIU H, XIE Y, et al. Short-term forecasting of electricity and gas demand in multi-energy system based on RBF-NN model[C]//Proceedings of 2019 IEEE International Conference on Energy Internet (ICEI). New York, America: IEEE, 2019: 542-547.

基金

国家自然科学基金项目(51977039)

PDF(3747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/