PDF(1465 KB)
PDF(1465 KB)
PDF(1465 KB)
基于RW-SSA-GRNN的短期电力负荷预测
Short-Term Power Load Forecasting Based on RW-SSA-GRNN
智能电网技术的迅速发展,对短期电力负荷预测的速度、精度和稳定性都提出了更高的要求。针对智能用电环境下负荷随机性强、数据量较少情况下短期电力负荷预测精度差、计算时间长等问题,提出一种基于随机游走(random walk,RW)、改进麻雀搜索算法(sparrow search algorithm,SSA)优化广义回归神经网络(general regression neural network,GRNN)的组合预测方法。模型采用多输入单输出,输入为负荷数据和气象信息等,输出为负荷预测值。通过引入随机游走对麻雀所处位置进行扰动,避免陷入局部最优的同时进一步提高其全局搜索能力,利用改进后的麻雀搜索算法优化广义回归神经网络的平滑因子,提升模型的自学能力、稳定性和精度。以陕西省西安市某支线的实际负荷数据进行预测验证,结果表明,改进后的算法拥有更好的收敛能力,模型预测精度更高。
With the rapid development of smart grid technology, the speed, accuracy and stability of short-term power load forecasting are required. Aiming at the problems such as strong randomness of load in intelligent electricity environment, poor accuracy of short-term power load prediction and long calculation time when the amount of data is small, a combined prediction method based on random walk (RW) and improved sparrow search algorithm (SSA) to optimize generalized regression neural network (GRNN) was proposed. The model uses multiple inputs and single outputs. The input is load data and meteorological information, and the output is the predicted hourly load values. The RW was introduced to disturb the location of the sparrow, avoid falling into the local optimal value, and further improve its global search ability. The improved SSA was used to optimize the smoothing factor of the GRNN, and improve the self-learning ability, stability and accuracy of the model. The actual load data of a branch line in Xi'an, Shaanxi province is used for forecasting and verification. The results show that the improved algorithm has better convergence ability, and the model has better prediction accuracy.
电力负荷 / 负荷预测 / 广义回归神经网络(GRNN) / 随机游走(RW) / 麻雀搜索算法(SSA)
power load / load forecasting / generalized regression neural network (GRNN) / random walk (RW) / sparrow search algorithm (SSA)
| [1] |
胡威,张新燕,李振恩,等. 基于优化的VMD-mRMR-LSTM模型的短期负荷预测[J]. 电力系统保护与控制,2022, 50(1): 88-97.
|
| [2] |
龙干,黄媚,方力谦,等. 基于改进多元宇宙算法优化ELM的短期电力负荷预测[J]. 电力系统保护与控制,2022, 50(19): 99-106.
|
| [3] |
魏震波,余雷. 基于FFT、DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力,2022, 50(3): 37-43.
|
| [4] |
刘辉,凌宁青,罗志强,等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力,2022, 50(8): 30-37.
|
| [5] |
万昆,柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术,2012, 36(11): 77-81.
|
| [6] |
李冬辉,尹海燕,郑博文. 基于MFOA-GRNN模型的年电力负荷预测[J]. 电网技术,2018, 42(2): 585-590.
|
| [7] |
|
| [8] |
金鑫. 基于灰色理论的短期电力负荷预测系统设计与实现[D]. 杭州:浙江工业大学,2016.
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
李国庆,刘钊,金国彬,等. 基于随机分布式嵌入框架及BP神经网络的超短期电力负荷预测[J]. 电网技术,2020, 44(2): 437-445.
|
| [14] |
王增平,赵兵,纪维佳,等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化,2019, 43(5): 53-58.
|
| [15] |
赵佩,代业明. 基于实时电价和加权灰色关联投影的SVM电力负荷预测[J]. 电网技术,2020, 44(4): 1325-1332.
|
| [16] |
|
| [17] |
谷云东,马冬芬,程红超. 基于相似度改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报,2018, 30(23): 1234-1239.
|
| [18] |
李廷顺,王伟,刘泽三. 考虑不确定区间的电力负荷GELM-WNN预测[J]. 计算机工程,2019, 36(1): 231-238.
|
| [19] |
马星河,闫炳耀,唐云峰,等. 基于优选组合预测技术的中长期负荷预测[J]. 电力系统及其自动化学报,2015, 27(6): 62-67.
|
| [20] |
王凌云,林跃涵,童华敏,等. 基于改进Apriori关联分析及MFOLSTM算法的短期负荷预测[J]. 电力系统保护与控制,2021, 49(20): 74-81.
|
| [21] |
侯慧,王晴. 关键信息缺失下基于相空间重构及机器学习的电力负荷预测[J]. 电力系统保护与控制,2022, 50(4): 75-82.
|
| [22] |
|
| [23] |
卓莹,张强,龚正虎. 网络态势预测的广义回归神经网络模型[J]. 解放军理工大学学报:自然科学版,2012, 13(2): 148-151.
|
| [24] |
林悦,夏厚培. 交叉验证的GRNN神经网络雷达目标识别方法研究[J]. 现代防御技术,2018, 46(4): 113-119.
|
| [25] |
祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制,2020, 48(9): 121-127.
|
| [26] |
|
| [27] |
李雅丽,王淑琴,陈倩茹,等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用,2020, 56(22): 1-12.
|
/
| 〈 |
|
〉 |