基于RW-SSA-GRNN的短期电力负荷预测

闫秀英,樊晟志

分布式能源 ›› 2022, Vol. 7 ›› Issue (6) : 37-43.

PDF(1465 KB)
PDF(1465 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (6) : 37-43. DOI: 10.16513/j.2096-2185.DE.2207605
学术研究

基于RW-SSA-GRNN的短期电力负荷预测

作者信息 +

Short-Term Power Load Forecasting Based on RW-SSA-GRNN

Author information +
文章历史 +

摘要

智能电网技术的迅速发展,对短期电力负荷预测的速度、精度和稳定性都提出了更高的要求。针对智能用电环境下负荷随机性强、数据量较少情况下短期电力负荷预测精度差、计算时间长等问题,提出一种基于随机游走(random walk,RW)、改进麻雀搜索算法(sparrow search algorithm,SSA)优化广义回归神经网络(general regression neural network,GRNN)的组合预测方法。模型采用多输入单输出,输入为负荷数据和气象信息等,输出为负荷预测值。通过引入随机游走对麻雀所处位置进行扰动,避免陷入局部最优的同时进一步提高其全局搜索能力,利用改进后的麻雀搜索算法优化广义回归神经网络的平滑因子,提升模型的自学能力、稳定性和精度。以陕西省西安市某支线的实际负荷数据进行预测验证,结果表明,改进后的算法拥有更好的收敛能力,模型预测精度更高。

Abstract

With the rapid development of smart grid technology, the speed, accuracy and stability of short-term power load forecasting are required. Aiming at the problems such as strong randomness of load in intelligent electricity environment, poor accuracy of short-term power load prediction and long calculation time when the amount of data is small, a combined prediction method based on random walk (RW) and improved sparrow search algorithm (SSA) to optimize generalized regression neural network (GRNN) was proposed. The model uses multiple inputs and single outputs. The input is load data and meteorological information, and the output is the predicted hourly load values. The RW was introduced to disturb the location of the sparrow, avoid falling into the local optimal value, and further improve its global search ability. The improved SSA was used to optimize the smoothing factor of the GRNN, and improve the self-learning ability, stability and accuracy of the model. The actual load data of a branch line in Xi'an, Shaanxi province is used for forecasting and verification. The results show that the improved algorithm has better convergence ability, and the model has better prediction accuracy.

关键词

电力负荷 / 负荷预测 / 广义回归神经网络(GRNN) / 随机游走(RW) / 麻雀搜索算法(SSA)

Key words

power load / load forecasting / generalized regression neural network (GRNN) / random walk (RW) / sparrow search algorithm (SSA)

引用本文

导出引用
闫秀英, 樊晟志. 基于RW-SSA-GRNN的短期电力负荷预测[J]. 分布式能源. 2022, 7(6): 37-43 https://doi.org/10.16513/j.2096-2185.DE.2207605
Xiuying YAN, Shengzhi FAN. Short-Term Power Load Forecasting Based on RW-SSA-GRNN[J]. Distributed Energy Resources. 2022, 7(6): 37-43 https://doi.org/10.16513/j.2096-2185.DE.2207605
中图分类号: TK01;TM71   

参考文献

[1]
胡威,张新燕,李振恩,等. 基于优化的VMD-mRMR-LSTM模型的短期负荷预测[J]. 电力系统保护与控制2022, 50(1): 88-97.
HU Wei, ZHANG Xinyan, LI Zhen'en, et al. Short-term load forecasting based on an optimized VMD-mRMR-LSTM model[J]. Power System Protection and Control, 2022, 50(1): 88-97.
[2]
龙干,黄媚,方力谦,等. 基于改进多元宇宙算法优化ELM的短期电力负荷预测[J]. 电力系统保护与控制2022, 50(19): 99-106.
LONG Gan, HUANG Mei, FANG Liqian, et al. Short-term power load forecasting based on an improved multi-verse optimizer algorithm optimized extreme learning machine[J]. Power System Protection and Control, 2022, 50(19): 99-106.
[3]
魏震波,余雷. 基于FFT、DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力2022, 50(3): 37-43.
WEI Zhenbo, YU Lei. Short-term load forecasting method based on FFT, DC-HC and LSTM[J]. Smart Power, 2022, 50(3): 37-43.
[4]
刘辉,凌宁青,罗志强,等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力2022, 50(8): 30-37.
LIU Hui, LING Ningqing, LUO Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50(8): 30-37.
[5]
万昆,柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术2012, 36(11): 77-81.
WAN Kun, LIU Ruiyu. Application of interval time-series vector autoregressive model in short-term load forecasting[J]. Power System Technology, 2012, 36(11): 77-81.
[6]
李冬辉,尹海燕,郑博文. 基于MFOA-GRNN模型的年电力负荷预测[J]. 电网技术2018, 42(2): 585-590.
LI Donghui, YIN Haiyan, ZHENG Bowen. An annual load forecasting model based on generalized regression neural network with multi-swarm fruit fly optimization algorithm[J]. Power System Technology, 2018, 42(2): 585-590.
[7]
ZHAO Jing, LIU Xiaojuan. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis[J]. Energy & Buildings, 2018, 174: 293-308.
[8]
金鑫. 基于灰色理论的短期电力负荷预测系统设计与实现[D]. 杭州:浙江工业大学,2016.
JIN Xin. Design and implementation of short-term power load forecasting system based on grey theory[D]. Hangzhou: Zhejiang University of Technology, 2016.
[9]
SREEKUMAR S, VERMA J, SUJIL A, et al. An approach towards real time short term load forecasting using grey index models for smart grid framework[J]. WSEAS Transactions on Power Systems, 2016, 11(3): 147-155.
[10]
ZHENG Z, CHEN H, LUO X. A Kalman filter-based bottom-up approach for household short-term load forecast[J]. Applied Energy, 2019, 250: 882-894.
[11]
HUANG L, YANG Y, ZHAO H, et al. Time series modeling and filtering method of electric power load stochastic noise[J]. Protection and Control of Modern Power Systems, 2017, 2(3): 269-275.
[12]
DOU C, ZHENG Y, YUE D, et al. Hybrid model for renewable energy and loads prediction based on data mining and variational mode decomposition[J]. IET Generation, Transmission & Distribution, 2018, 12(11): 2642-2649.
[13]
李国庆,刘钊,金国彬,等. 基于随机分布式嵌入框架及BP神经网络的超短期电力负荷预测[J]. 电网技术2020, 44(2): 437-445.
LI Guoqing, LIU Zhao, JIN Guobin, et al. Ultra short-term power load forecasting based on randomly distributive embedded framework and BP neural network[J]. Power System Technology, 2020, 44(2): 437-445.
[14]
王增平,赵兵,纪维佳,等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化2019, 43(5): 53-58.
WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53-58.
[15]
赵佩,代业明. 基于实时电价和加权灰色关联投影的SVM电力负荷预测[J]. 电网技术2020, 44(4): 1325-1332.
ZHAO Pei, DAI Yeming. Power load forecasting of SVM based on real-time price and weighted grey relational projection algorithm[J]. Power System Technology, 2020, 44(4): 1325-1332.
[16]
LANGEVELD J, ENGELBRECHT A P. Set-based particle swarm optimization applied to the multidimensional knapsack problem[J]. Swarm Intelligence, 2012, 6(4): 297-342.
[17]
谷云东,马冬芬,程红超. 基于相似度改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报2018, 30(23): 1234-1239.
GU Yundong, MA Dongfen, CHENG Hongchao. Power load forecasting based on improved gradient lifting decision tree[J]. Proceedings of the CSU-EPSA, 2018, 30(23): 1234-1239.
[18]
李廷顺,王伟,刘泽三. 考虑不确定区间的电力负荷GELM-WNN预测[J]. 计算机工程2019, 36(1): 231-238.
LI Tingshun, WANG Wei, LIU Zesan. GELM-WNN forecasting of electric load considering uncertain interval[J]. Computer Engineering, 2019, 36(1): 231-238.
[19]
马星河,闫炳耀,唐云峰,等. 基于优选组合预测技术的中长期负荷预测[J]. 电力系统及其自动化学报2015, 27(6): 62-67.
MA Xinghe, YAN Bingyao, TANG Yunfeng, et al. Medium and long-term load forecasting based on optimized combination forecast technology[J]. Proceedings of the CSU-EPSA, 2015, 27(6): 62-67.
[20]
王凌云,林跃涵,童华敏,等. 基于改进Apriori关联分析及MFOLSTM算法的短期负荷预测[J]. 电力系统保护与控制2021, 49(20): 74-81.
WANG Lingyun, LIN Yuehan, TONG Huamin, et al. Short-term load forecasting based on improved Apriori correlation analysis and an MFOLSTM algorithm[J]. Power System Protection and Control, 2021, 49(20): 74-81.
[21]
侯慧,王晴. 关键信息缺失下基于相空间重构及机器学习的电力负荷预测[J]. 电力系统保护与控制2022, 50(4): 75-82.
HOU Hui, WANG Qing. Power load forecasting without key information based on phase space reconstruction and machine learning[J]. Power System Protection and Control, 2022, 50(4): 75-82.
[22]
SPECHT D F. A general regression neural network[J]. IEEE Transaction on Neural Networks, 1991, 2(6): 568-576.
[23]
卓莹,张强,龚正虎. 网络态势预测的广义回归神经网络模型[J]. 解放军理工大学学报:自然科学版2012, 13(2): 148-151.
ZHUO Ying, ZHANG Qiang, GONG Zhenghu. GRNN model of network situation forecast[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2012, 13(2): 148-151.
[24]
林悦,夏厚培. 交叉验证的GRNN神经网络雷达目标识别方法研究[J]. 现代防御技术2018, 46(4): 113-119.
LIN Yue, XIA Houpei. Radar target recognition based on cross validation GRNN[J]. Modern Defence Technology, 2018, 46(4): 113-119.
[25]
祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制2020, 48(9): 121-127.
ZHU Xuechang. Research on short-term power load forecasting method based on IFOA-GRNN[J]. Power System Protection and Control, 2020, 48(9): 121-127.
[26]
XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[27]
李雅丽,王淑琴,陈倩茹,等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用2020, 56(22): 1-12.
LI Yali, WANG Shuqin, CHEN Qianru, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12.

基金

陕西省自然科学基金项目(2022JM-283)

PDF(1465 KB)

Accesses

Citation

Detail

段落导航
相关文章

/