PDF(1815 KB)
PDF(1815 KB)
PDF(1815 KB)
场间尾流对风电场发电量的影响
Influence of Wake Between Wind Farms on Wind Power Generation
风力机的主动偏航可以使尾流偏转,从而减小尾流对下游风力机的冲击。尾流效应会增大风力机的疲劳载荷和功率损失,上游风电场的尾流不断叠加,在风电场间形成大规模的尾迹簇,对下游风力机载荷和功率影响更加明显。为明确风电场间尾流的影响,使用WFsim仿真了偏航与未偏航时,上游风电场尾迹簇在场间和下游风电场的尾迹变化以及单个风力机的平均功率变化。以12 m/s为仿真风速,对2个相隔15D和20D的风电场进行了偏航和没有偏航的仿真分析,结果表明偏航可以大度幅提升下游风电场首排风力机的功率输出,并对之后的风力机影响相对较小,这意味着场间尾流主要影响下游风电场的首排风力机。另外,增大风电场间距可有效减小场间尾流影响。
The active yaw of the wind turbine can deflect the wake, and thus, reduce the impact of the wake on the downstream wind turbine. The wake effect will increase the fatigue load and power loss of wind turbines. Furthermore, the wake of upstream wind farms is constantly superimposed, forming a large-scale wake cluster between wind farms, which has a more obvious influence on the load and power of downstream wind turbines. At present, there is a tendency for multiple wind farms to gather and develop in the same area. In order to clarify the influence of wake between wind farms, WFsim is used in this paper to simulate the changes of wake clusters between fields and in downstream wind farms as well as the changes of average power of a single wind turbine during yawed and unyawed. 12 m/s of wind speed is used in the simulation , the yawed and unyawed simulation analysis of two wind farms separated by 15D and 20D are carried out. The results show that yawed condition can increase the power output of the first row wind turbines of the downstream wind farm sharply, and has relatively little influence on the wind turbines behind the first row of the downstream wind farm, which means that the interfield wake mainly affects the first row wind turbines of the downstream wind farm. In addition, increasing the spacing between wind farms can reduce the impact of wake between fields effectively.
wind farm / wake effect / yaw / WFsim
| [1] |
徐彬,薛帅,高厚磊,等. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术,2022, 43(2): 227-235.
|
| [2] |
国家发展改革委. 可再生能源发展“十三五”规划[EB/OL]. (2017-05-16) [2021-01-20].
|
| [3] |
|
| [4] |
于龙泽,肖白,孙立国. 风光出力场景生成的条件深度卷积生成对抗网络方法[J]. 东北电力大学学报,2021, 41(6): 90-99.
|
| [5] |
姜红丽,刘羽茜,冯一铭,等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术,2022, 43(1): 54-64.
|
| [6] |
周强,马彦宏,沈琛云,等. 新时期中国西北地区新能源可持续发展反思与建议[J]. 电网与清洁能源,2020, 36(6): 78-84.
|
| [7] |
杨茂,代博祉,刘蕾. 风电功率概率预测研究综述[J]. 东北电力大学学报,2020, 40(2): 1-6.
|
| [8] |
杨茂,于欣楠. 考虑风电场功率爬坡的超短期组合预测[J]. 东北电力大学学报,2022, 42(1): 63-70.
|
| [9] |
|
| [10] |
|
| [11] |
阎洁,张永蕊,张浩. 区域风电场群集中式功率预测系统设计与应用[J]. 分布式能源,2022, 7(1): 28-36.
|
| [12] |
刘栋,魏霞,王维庆,等. 基于SSA-ELM的短期风电功率预测[J]. 智慧电力,2021, 49(6): 53-59.
|
| [13] |
郑俊观,王硕禾,张立园. 考虑尾流效应的并网风电场等值建模与仿真[J]. 分布式能源,2017, 2(4): 7-12.
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
褚景春,袁凌,李方敏,等. 基于致动盘模型的单台风电机组尾流流场模拟[J]. 分布式能源,2018, 3(3): 10-14.
|
| [18] |
|
| [19] |
孙涛,段琦玮,党群,等. 风力机尾迹冲击在线检测算法[J]. 分布式能源,2021, 6(1): 51-55.
|
| [20] |
孙涛. 场间尾迹簇对风电场发电量和载荷的影响分析[J]. 分布式能源,2021, 6(2): 56-60.
|
| [21] |
张磊,李继影,李钦伟,等. 风力机偏航系统控制策略研究现状及进展[J]. 发电技术,2021, 42(3): 306-312.
|
| [22] |
郭茂丰,张立茹,李得银,等. 偏航状态下水平轴风力机尾迹偏移及湍流特征分析[J]. 排灌机械工程学报,2020, 38(7): 702-707.
|
| [23] |
|
| [24] |
|
| [25] |
|
/
| 〈 |
|
〉 |