区域能源站耦合冰蓄冷系统设计与运行分析

马鹏亮

分布式能源 ›› 2023, Vol. 8 ›› Issue (1) : 69-75.

PDF(2082 KB)
PDF(2082 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (1) : 69-75. DOI: 10.16513/j.2096-2185.DE.2308109
应用技术

区域能源站耦合冰蓄冷系统设计与运行分析

作者信息 +

Design and Operation Analysis of Coupled Ice Storage System for a Regional Energy Station

Author information +
文章历史 +

摘要

区域能源站基于多能互补,将多种不同形式的冷源经过智能耦合,以满足末端对冷负荷的需求。为使多能互补区域能源站供冷系统能经济、节能、绿色、环保、高效地运行,在设计中冷源装机容量要与运行模式相匹配。基于北京某区域能源站的实际案例,对其项目后期运行模式进行分析,设计其供冷系统各冷源的装机容量。研究表明,在供冷系统中耦合蓄冰槽后,可根据末端负荷变化情况,调整不同的运行模式以降低系统的运行成本,实现经济、高效运行。与传统的单一冷源供冷系统相比,多能互补的供冷系统通过多种能源的智能耦合提高供冷与末端负荷的匹配性,同时降低运行成本。

Abstract

Based on multi-energy complementation, a variety of different forms of cold sources are intelligently coupled in the regional energy station to meet the demand of terminal cooling load. In order to make the multi-energy complementary regional energy station cooling system run economically, energy-saving, green, environmental protection and efficiently, the installed capacity of the cold source should match the operation mode in the design. Based on the practical case of a regional energy station in Beijing, the late operation mode of the project is analyzed, and the installed capacity of each cold source of the cooling system is designed. The research shows that after coupling the ice storage tank in the cooling system, different operation modes can be adjusted according to the change of terminal load in order to reduce the operating cost of the system and achieve economic and efficient operation. Compared with the traditional single source cooling system, the multi-energy complementary cooling system can improve the matching of cooling and terminal load through intelligent coupling of various energy sources, and reduce the operating cost.

关键词

区域能源站 / 多能互补 / 冰蓄冷 / 系统设计 / 系统运行模式 / 运行经济性

Key words

regional energy station / multienergy complementarity / ice storage / system design / system operation mode / operating economy

引用本文

导出引用
马鹏亮. 区域能源站耦合冰蓄冷系统设计与运行分析[J]. 分布式能源. 2023, 8(1): 69-75 https://doi.org/10.16513/j.2096-2185.DE.2308109
Pengliang MA. Design and Operation Analysis of Coupled Ice Storage System for a Regional Energy Station[J]. Distributed Energy Resources. 2023, 8(1): 69-75 https://doi.org/10.16513/j.2096-2185.DE.2308109
中图分类号: TK26   

参考文献

[1]
魏一鸣,余碧莹,唐葆君. 中国碳达峰碳中和时间表与路线图研究[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 13-26.
WEI Yiming, YU Biying, TANG Baojun. Roadmap for achieving China's carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4): 13-26.
[2]
王中庆. 山西能源革命与碳达峰碳中和有效衔接研究[J]. 经济问题2022(9): 115-122.
WANG Zhongqing. Research on the effective connection between Shanxi energy revolution and emission peak and carbon neutrality[J]. On Economic Problems, 2022(9): 115-122.
[3]
高丹,孔庚,麻林巍. 我国区域能源现状及中长期发展战略重点研究[J]. 中国工程科学2021, 23(1): 7-14.
GAO Dan, KONG Geng, MA Linwei. Energy development status and developing focus of varied regions in China[J]. Strategic Study of CAE, 2021, 23(1): 7-14.
[4]
翟少磊,张学志,段怡,等. 基于交直流微电网的智慧能源站拓扑结构研究[J]. 智慧电力2021, 49(5): 28-34.
ZHAI Shaolei, ZHANG Xuezhi, DUAN Yi, et al. Topology structure of smart energy station based on AC/DC microgrid[J]. Smart Power, 2021, 49(5): 28-34.
[5]
李峰,周孝清. 对广州大学城区域能源站系统若干问题的探讨[J]. 制冷2003(4): 14-18.
LI Feng, ZHOU Xiaoqing. Discuss on district cooling in the guangzhou university town[J]. Refrigeration, 2003(4): 14-18.
[6]
黄挺. 广州大学城分布式能源站供冷系统选型设计[J]. 南方能源建设2017, 4(4): 34-36.
HUANG Ting. Research on central cooling design for distributed energy station in Guangzhou university town[J]. Southern Energy Construction, 2017, 4(4): 34-36.
[7]
李应繁. 基于源网荷储的区域能源互联网信息化管理系统分析[J]. 电力系统装备2022(4): 149-151.
LI Yingfan. Analysis of regional energy internet information management system based on source network and load storage[J]. Electric Power System Equipment, 2022(4): 149-151.
[8]
赵壮,张宏立,王聪. 区域能源互联网的“源网储荷”运行优化研究[J]. 可再生能源2022(2): 238-246.
ZHAO Zhuang, ZHANG Hongli, WANG Cong. Research on optimization of “source-net-charge-storage” operation of regional energy internet[J]. Renewable Energy Resources, 2022(2): 238-246.
[9]
谢林鸿,李慧. 区域能源智能物联网平台开发[J]. 自动化仪表2022(6): 24-28.
XIE Linhong, LI Hui. Development of regional energy intelligent IoT platform[J]. Process Automation Instrumentation, 2022(6): 24-28.
[10]
程杰. 基于源网储荷的区域能源互联管理系统设计[J]. 信息与电脑2022(3): 91-93.
CHENG Jie. Design of regional energy interconnection management system based on source network load storage[J]. China Computer & Communication, 2022(3): 91-93.
[11]
孙汉闻,龙妍. 浅谈应用GLPK解决区域能源模型分析问题[J]. 资源节约与环保2019(2): 147-148.
[12]
马丽叶,张涛,杨林林. 基于变权可拓云模型的区域综合能源系统综合评价[J]. 电工技术学报2022, 37(11): 2789-2799.
MA Liye, ZHANG Tao, YANG Linlin. Comprehensive evaluation of regional integrated energy system based on variable weight extension cloud model[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2789-2799.
[13]
杨海涛,江晶晶. 基于模型预测控制的区域综合能源系统运行优化方法[J]. 电气技术2022(4): 7-13.
YANG Haitao, JIANG Jingjing. Operational optimization method of regional integrated energy system based on model predictive control[J]. Electrical Engineering, 2022(4): 7-13.
[14]
魏巍. 某综合区域燃气分布式能源耦合可再生能源供能方案研究[J]. 节能与环保2021(2): 88-89.
WEI Wei. The energy supply scheme of gas-distributed energy coupled with renewable energy in a comprehensive region[J]. Energy Conservation & Environmental Protection, 2021(2): 88-89.
[15]
徐恒志,周博文,李广地,等. 含水源热泵的区域综合能源系统低碳运行优化研究[J]. 综合智慧能源2022, 44(1): 39-48.
XU Hengzhi, ZHOU Bowen, LI Guangdi, et al. Research on optimal operation of the regional integrated energy system with water-source heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1): 39-48.
[16]
余莉,徐静静. 综合能源服务项目新增热泵系统的案例分析[J]. 综合智慧能源2022, 44(1): 72-79.
YU Li, XU Jingjing. Case study on the integrated energy service project with newly installed heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1): 72-79.
[17]
蒲愿,程浩忠,宋毅. 计及多能耦合的区域综合能源系统最优能流计算[J]. 电测与仪表2022(9): 8-15.
PU Yuan, CHENG Haozhong, SONG Yi. Calculation of optimal energy flow in a regional integrated energy system considering multi-energy coupling[J]. Electrical Measurement & Instrumentation, 2022(9): 8-15.
[18]
李茜,宾帆. 基于复合能源管道供能的区域综合能源系统优化运行[J]. 电力系统自动化2022, 46(17): 91-101.
LI Qian, BIN Fan. Optimal operation of regional integrated energy system based on energy supply through composite energy pipeline[J]. Automation of Electric Power Systems, 2022, 46(17): 91-101.
[19]
刘自发,谭雅之. 区域综合能源系统规划关键问题研究综述[J]. 综合智慧能源2022, 44(6): 12-24.
LIU Zifa, TAN Yazhi. Review on key points in the planning for a district-level integrated energy system[J]. Integrated Intelligent Energy, 2022, 44(6): 12-24.
[20]
向艳蕾,杨允. 区域能源多能互补耦合系统优化配置研究[J]. 煤质技术2021(5): 43-50.
XIANG Yanlei, YANG Yun. Optimal configuration of multi-energy complementary systems[J]. Coal Quality Technology, 2021(5): 43-50.
[21]
郭创新,丁筱. 综合能源系统优化运行研究现状及展望[J]. 发电技术2020, 41(1): 2-8.
GUO Chuangxin, DING Xiao. Research status and prospect of optimal operation of integrated energy system[J]. Power Generation Technology, 2020, 41(1): 2-8.
[22]
欧阳斌,袁志昌,陆超,等. 考虑源荷储多能互补的冷热电综合能源系统优化运行研究[J]. 发电技术2020, 41(1): 19-29.
OUYANG Bin, YUAN Zhichang, LU Chao, et al. Research on optimal operation of cold-thermal-electric integrated energy system considering source-load-storage multi-energy complementarity[J]. Power Generation Technology, 2020, 41(1): 19-29.
[23]
张尔佳,邰能灵,陈旸,等. 基于虚拟储能的综合能源系统分布式电源功率波动平抑策略[J]. 发电技术2020, 41(1): 30-40.
ZHANG Erjia, TAI Nengling, CHEN Yang, et al. A coordination strategy to smooth power fluctuation of distributed generation in integrated energy system based on virtual energy storage[J]. Power Generation Technology, 2020, 41(1): 30-40.
[24]
林群武,郑洲. 三亚某办公商业综合体冰蓄冷系统设计[J]. 科学咨询2022(9): 42-45.
[25]
孙轶恺,漆淘懿,张利军. 市场环境下含冰蓄冷空调的综合能源系统优化运行[J]. 南方电网技术2022, 16(4): 95-104.
SUN Yikai, QI Taoyi, ZHANG Lijun. Optimal operation of integrated energy system including ice-storage air-conditioning in power market[J]. Southern Power System Technology, 2022, 16(4): 95-104.

PDF(2082 KB)

Accesses

Citation

Detail

段落导航
相关文章

/