PDF(3813 KB)
PDF(3813 KB)
PDF(3813 KB)
海上风电的发展现状与前景展望
Development Status and Prospect of Offshore Wind Power
近几年在“碳达峰、碳中和”目标下,可再生能源领域得以巨大发展,海上风电技术凭借其资源丰富、可利用前景大的优势,有望成为未来绿色能源来源的中流砥柱;但是,目前海上风电场尤其是深远海风电场仍面临建设难度大、风电消纳技术不成熟等问题。为此,首先介绍海上风电的发展现状,分析目前应用于海上风电输送技术的优势与不足,介绍当前海上风电领域内出现的新技术,分析总结海上风电制氢技术及氢气的转运技术。结合发展趋势,总结未来海上风电的发展应分近海和深远海两条主线的走向,提出深远海风电与氢能源发展紧密结合的观点,引入海上风电与储氢储能结合的思路,并分别对深远海和近海的风电前景进行展望,可为解决海上风电场所面临的问题提供思路,也可为海上风电的进一步发展提供参考。
In recent years, under the goal of "carbon peak and carbon neutrality", the field of renewable energy has made great progress. Offshore wind power technology is expected to become the mainstay of green energy sources in the future due to its advantages of abundant resources and large utilization prospects. But at present, offshore wind farms, especially far-reaching offshore wind farms, are still faced with problems such as difficulty in construction and immaturity of wind power consumption technology. This paper first introduces the current development status of offshore wind power, analyzes the advantages and disadvantages of current offshore wind power transmission technology, introduces the current new technologies in the field of offshore wind power, analyzes and summarizes the offshore wind power hydrogen production technology and hydrogen transfer technology. Combined with the development trend, this paper summarizes the development of offshore wind power in the future, which should be divided into two main lines: offshore wind power and far-reaching offshore wind power, puts forward the view that the development of offshore wind power and hydrogen energy should be closely combined, introduces the idea of combining offshore wind power with hydrogen storage and energy storage, and forecasts the prospect of offshore wind power and far-reaching offshore wind power respectively, which can provide ideas for solving the problems faced by offshore wind power sites. It can also provide reference for the further development of offshore wind power.
可再生能源 / 海上风电 / 输电技术 / 海水制氢 / 氢气储运 / 储能
renewable energy / offshore wind power / transmission technology / hydrogen production from seawater / hydrogen storage and transportation / energy storage
| [1] |
国家能源局. 国家能源局 科学技术部关于印发《“十四五”能源领域科技创新规划》的通知[EB/OL]. (2021-11-29)[2022-06-16].
|
| [2] |
李志川,胡鹏,马佳星,等. 中国海上风电发展现状分析及展望[J]. 中国海上油气,2022, 34(5): 229-236.
|
| [3] |
薛海峰,武晓云. 基于离散多目标蜻蜓算法和改进FCM的风电协调输电网扩展规划研究[J]. 智慧电力,2021, 49(6): 83-90.
|
| [4] |
黄加明. 风力发电的发展现状及前景探讨[J]. 应用能源技术,2015(4): 47-50.
|
| [5] |
邢耀宏. 弃风弃光储能调度优化方法研究[D]. 长春:吉林大学,2021.
|
| [6] |
彭莉,仇欣. 基于山脊线提取的山地风电选址及自动布机研究 [J]. 科技和产业,2022, 22(1): 363-368.
|
| [7] |
关晓晴,丁霞. 河北衡水某风电项目噪音问题评估与解决方案 [J]. 神华科技,2019, 17(8): 64-68.
|
| [8] |
李铮,郭小江,申旭辉,等. 我国海上风电发展关键技术综述 [J]. 发电技术,2022, 43(2): 186-197.
|
| [9] |
黄海龙,胡志良,代万宝,等. 海上风电发展现状及发展趋势[J]. 能源与节能,2020(6): 51-53.
|
| [10] |
戴瑜. 德国海上风电发展经验及启示[J]. 开放导报,2021(2): 102-109.
|
| [11] |
江波,肖晶晶,闫峻明. 我国海上风电施工能力分析 [J]. 可再生能源,2007, 25(4): 104-106.
|
| [12] |
GWEC. Global wind report 2022[R/OL]. (2022-04-04)[2022-06-16].
|
| [13] |
福清新闻网. 亚洲单机容量最大风电机组在福清下线每年可输出5000万度清洁电能[EB/OL]. (2022-02-25)[2022-06-17].
|
| [14] |
本刊讯.三峡 全球单机容量最大16兆瓦海上风电机组下线[J]. 中国工程咨询,2022(12): 126.
|
| [15] |
麦志辉,李光远,吴韩,等. 海上风电安装船及关键装备技术[J]. 中国海洋平台,2021, 36(6): 54-58, 83.
|
| [16] |
王坤. 基于石油钻井平台的海上风电吊装技术研究 [J]. 电气时代,2023(1): 98-103.
|
| [17] |
刘岚,吴垠峰,秦小健,等. 海上风电运维的技术现状及发展趋势 [J]. 中国水运:下半月,2022, 22(12): 47-49.
|
| [18] |
张真,殷爱鸣,金绪良,等. 海上风电腐蚀监测技术研究现状 [J]. 分布式能源,2022, 7(5): 39-45.
|
| [19] |
罗承先. 世界海上风力发电现状[J]. 中外能源,2019, 24(2): 22-27.
|
| [20] |
徐政. 海上风电送出主要方案及其关键技术问题[J]. 电力系统自动化,2022, 46(21): 1-10.
|
| [21] |
李岩,冯俊杰,卢毓欣,等. 大容量远海风电柔性直流送出关键技术与展望 [J]. 高电压技术,2022, 48(09): 3384-3393.
|
| [22] |
何建东,邱情芳,冯成. 大规模海上风电集成送出关键技术与发展趋势综述 [J]. 风能,2022(12): 82-87.
|
| [23] |
张开华,张智伟,王婧倩,等. 海上风电场输电系统选择[J]. 太阳能,2019(2): 56-60, 55.
|
| [24] |
朱家宁,张诗钽,葛维春,等. 海上风电外送及电能输送技术综述[J]. 发电技术,2022, 43(2): 236-248.
|
| [25] |
李雪临,袁凌. 海上风电制氢技术发展现状与建议 [J]. 发电技术,2022, 43(2): 198-206.
|
| [26] |
罗魁,郭剑波,马士聪,等. 海上风电并网可靠性分析及提升关键技术综述[J]. 电网技术,2022, 46(10): 3691-3703.
|
| [27] |
黄宇昕,倪世杰,赵平,等. 海上风电柔性直流系统变惯性协调控制策略[J]. 分布式能源,2022, 7(6): 1-10.
|
| [28] |
王锡凡,卫晓辉,宁联辉,等. 海上风电并网与输送方案比较[J]. 中国电机工程学报,2014, 34(31): 5459-5466.
|
| [29] |
史铁,张玉广,宋时莉,等. 海上风电制氢的现状和展望 [J]. 中国资源综合利用,2022, 40(5): 135-136, 139.
|
| [30] |
王峰,逯鹏,张清涛,等. 海上风电制氢发展趋势及前景展望[J]. 综合智慧能源,2022, 44(5): 41-48.
|
| [31] |
|
| [32] |
|
| [33] |
李佳蓉,林今,陈凯旋,等. 考虑尾流效应的分布式海上风电制氢集群容量优化配置[J/OL]. 电力系统自动化:1-11[2023-02-22]. http://kns.cnki.net/kcms/detail/32.1180.TP.20230220.1144.004.html.
|
| [34] |
|
| [35] |
柯善超,陈锐,陈刚华,等. 风电耦合海水淡化制氢技术研究 [J]. 分布式能源,2021, 6(4): 41-46.
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
郑澳辉,曹峥,徐玉杰,等. 压缩空气储能驱动反渗透海水淡化系统 [J]. 储能科学与技术,2021, 10(5): 1597-1606.
|
| [41] |
丁镠,唐涛,王耀萱,等. 氢储运技术研究进展与发展趋势[J]. 天然气化工—C1化学与化工,2022, 47(2): 35-40.
|
| [42] |
|
| [43] |
|
| [44] |
张振扬,解辉. 氢能利用-液氢的制、储、运技术现状及分析[J/OL]. 可再生能源:1-8[2023-02-22]. https://doi.org/10.13941/j.cnki.21-1469/tk.20220726.001.
|
| [45] |
屈莎莎,谭粤,李蔚,等. 液氢储运容器用低温材料的研究进展[J]. 山东化工,2022, 51(20): 106-109, 113.
|
| [46] |
|
| [47] |
赵延兴,公茂琼,周远. 气相低温高压储氢密度和能耗的理论分析及比较 [J]. 科学通报,2019, 64(25): 2654-2660.
|
| [48] |
桂薇. 独立式海上风电制氢工艺设计[J]. 南方能源建设,2022, 9(4): 40-46.
|
| [49] |
颜畅,黄晟,屈尹鹏. 面向碳中和的海上风电制氢技术研究综述 [J]. 综合智慧能源,2022, 44(5): 30-40.
|
| [50] |
张洒洒,杨伦庆,刘强,等. 广东省海上风电制氢产业发展研究 [J]. 中国资源综合利用,2022, 40(12): 185-188.
|
| [51] |
何青,刘辉,刘文毅. 风电-压缩空气储能系统火用和火用成本分析模型 [J]. 热力发电,2016, 45(2): 34-39.
|
| [52] |
王志文. 水下压缩空气储能系统设计与能效分析[D]; 大连:大连海事大学,2018.
|
| [53] |
刘扬波,陈俊生,李全皎,等. 海上风电水下压缩空气储能系统运行及变工况分析[J]. 南方电网技术,2022, 16(4): 50-59.
|
| [54] |
田甜,李怡雪,黄磊,等. 海上风电制氢技术经济性对比分析 [J]. 电力建设,2021, 42(12): 136-144.
|
| [55] |
郑军. 高温超导电机技术的研究现状与应用前景浅析 [J]. 新材料产业,2017(8): 60-65.
|
| [56] |
张国民,陈建辉,邱清泉,等. 超导直流能源管道的研究进展[J]. 电工技术学报,2021, 36(21): 4389-4398, 4428.
|
/
| 〈 |
|
〉 |