PDF(4883 KB)
PDF(4883 KB)
PDF(4883 KB)
基于特征选择及误差修正的风电功率预测
Wind Power Prediction Based on Feature Selection and Error Correction
为有效提高风电功率预测的精度,提出一种基于特征选择及误差修正的风电功率预测方法。综合分析风速、温/湿度、风向等特征对风电出力的影响,提出了正交化最大信息系数(orthogonalization maximal information coefficient,OMIC)结合预测模型的特征选择方法,可优选出适配于预测模型的特征维数。针对预测模型训练中会产生的固有误差,提出用动态模态分解(dynamic mode decomposition,DMD)来跟踪误差数据的时空模态,DMD最大的优点在于其数据驱动性质,不依赖于任何参数设定以及先验假设,可以实现更快捷、简便的误差预测。通过特征选择、误差修正来优化预测模型,以取得更精确的预测结果。基于北方某风电场单台风机实际数据,将所提方法与深度学习模型结合进行预测,并对比了相关预测指标,仿真结果表明本文所提方法能够有效提升预测精度。
To enhance the accuracy of wind power prediction, this paper presents a wind power prediction method that incorporates feature selection and error correction techniques. Initially, the impact of wind speed, temperature, humidity, wind direction and other features on wind power output is comprehensively analyzed. A feature selection approach based on orthogonalization maximal information coefficient (OMIC) combined with a prediction model is proposed to optimize the feature dimension of the model. In addition, to address the inherent errors that may arise during the prediction model training, a dynamic mode decomposition (DMD) approach is employed to track the spatiotemporal mode of error data. DMD is advantageous due to its data-driven nature, which eliminates dependence on any parameter settings and prior assumptions, thereby enabling faster and easier error prediction. By optimizing the prediction model through feature selection and error correction, the proposed method yields more accurate prediction results. To evaluate the effectiveness of the proposed method, actual data from a single wind turbine in a wind farm located in the north is employed. The proposed method is combined with a deep learning model, and relevant prediction indicators are compared. Simulation results demonstrate that the proposed method effectively improves prediction accuracy.
风电功率预测 / 特征选择 / 误差修正 / 正交化最大信息系数(OMIC) / 动态模态分解(DMD)
wind power prediction / feature selection / error correction / orthogonalization maximal information coefficient (OMIC) / dynamic mode decomposition (DMD)
| [1] |
孙荣富,张涛,和青,等. 风电功率预测关键技术及应用综述[J]. 高电压技术,2021, 47(4): 1129-1143.
|
| [2] |
张亚超,刘开培,秦亮. 基于VMD-SE和机器学习算法的短期风电功率多层级综合预测模型[J]. 电网技术,2016, 40(5): 1334-1340.
|
| [3] |
叶林,赵金龙,路朋,等. 考虑气象特征与波动过程关联的短期风电功率组合预测[J]. 电力系统自动化,2021, 45(4): 54-62.
|
| [4] |
张群,唐振浩,王恭,等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报,2021, 42(10): 275-281.
|
| [5] |
王依宁,解大,王西田,等. 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报,2019, 39(14): 4070-4080.
|
| [6] |
|
| [7] |
郁琛,薛禹胜,文福拴,等. 按时序特征优化模型后在线选配的超短期风电预测[J]. 电力系统自动化,2015, 39(8): 5-11.
|
| [8] |
孙泽贤,孙鹤旭. 计及误差反馈的短期风电功率预测[J]. 太阳能学报,2020, 41(8): 281-287.
|
| [9] |
王贺,胡志坚,张翌晖,等. 基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J]. 电工技术学报,2014, 29(4): 237-245.
|
| [10] |
|
| [11] |
孙辉,杨帆,高正男,等. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化,2022, 46(8): 95-103.
|
| [12] |
程凯,彭小圣,徐其友,等. 基于特征选择与多层级深度迁移学习的风电场短期功率预测[J]. 高电压技术,2022, 48(2): 497-503.
|
| [13] |
|
| [14] |
唐振浩,孟庆煜,曹生现,等. 基于小波深度置信网络的风电爬坡预测方法[J]. 太阳能学报,2019, 40(11): 3213-3220.
|
| [15] |
李大中,李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报,2021, 42(12): 200-205.
|
| [16] |
李嘉文,盛德仁,李蔚,等. 基于多目标优化和误差修正的短期风速预测[J]. 太阳能学报,2022, 43(8): 273-280.
|
| [17] |
刘雨佳,樊艳芳,白雪岩等. 基于特征交叉机制和误差补偿的风力发电功率短期预测[J/OL]. 电工技术学报:1-12[2023-01-14]. https://doi.org/10.19595/j.cnki.1000-6753.tces.220477.
|
| [18] |
丁婷婷,杨明,于一潇,等. 基于误差修正的短期风电功率集成预测方法[J]. 高电压技术,2022, 48(2): 488-496.
|
| [19] |
|
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |