PDF(2236 KB)
PDF(2236 KB)
PDF(2236 KB)
面向新能源的全钒液流电池储能电站优化设计
Optimal Design of Vanadium Redox Flow Battery Energy Storage Station for New Energy
作为一种新型长时储能技术,全钒液流电池(vanadium redox flow battery,VRFB)适用于大规模调峰调频、新能源配套等场景,但存在功率与容量配比复杂、占地较大、能效较低的问题。立足于解决新能源发电弃风弃光限电问题,通过建立数学模型,优化目标函数,提出储能容量配置优化设计的理论方法;通过优化储能电站(energy storage station,ESS)拓扑设计,提高系统集成度和电力接入的可靠性;通过建立能量回收数学模型,提出能量回收型热管理设计提高系统效率的方法;通过建立多源数据融合数字孪生模型,提出基于数字孪生的VRFB储能运维技术的思路。最后,通过仿真分析,验证了优化设计的可行性,其削峰率达16%,限电量由原来的45%下降到14%,同时节省占地15%,效率从70%提升至90%左右,为面向新能源的大规模ESS的优化设计提供了系统的理论方法和可行的解决方案。
As one of new long-term energy storage technology, the vanadium redox flow battery (VRFB) is suitable for peak-shaving, frequency modulation and new energy support, etc. However, there are issues such as complex power to capacity ratio, larger occupied area, and lower energy efficiency. Based on solving the problem of abandoning of wind, solar, and power limit in new energy power generation, this paper forwards a theoretical method for the optimal design of energy storage capacity configuration by establishing a mathematical model and optimizing the objective function. By optimizing the topology design of energy storage station (ESS), system integration and reliability of power access are improved. By establishing an energy recovery mathematical model, a method for improving system efficiency through energy recovery based thermal management design is proposed. By establishing a multi-source data mix digital twinning model, the idea of VRFB energy storage operation and maintenance technology based on digital twinning is proposed. Finally, the simulation analysis verifies the feasibility of the optimized design. The peak shaving rate can be reached to 16%, and the power limit is reduced from 45% to 14%. Meanwhile, the occupied area can be saved by 15%, and the efficiency can be increased from 70% to about 90%. It provides a systematic theoretical method and feasible solution for the large-scale VRFB ESS optimization design for new energy.
新能源 / 全钒液流电池(VRFB) / 储能电站(ESS) / 优化设计
new energy / vanadium redox flow battery (VRFB) / energy storage station (ESS) / optimal design
| [1] |
赵书强,刘大正,谢宇琪,等. 基于相关机会目标规划的风光储联合发电系统储能调度策略. [J]. 电力系统自动化,2015, 39(14): 30-35.
|
| [2] |
张步涵,曾杰,毛承雄,等. 电池储能系统在改善并网风电场电能质量和稳定性中的应用[J]. 电网技术,2006, 30(15): 54-58.
|
| [3] |
布鲁奈特. 储能技术[M]. 唐西胜,译. 北京:机械工业出版社,2013: 28.
|
| [4] |
戚永志,刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报. 2014, 29(8): 265-273.
|
| [5] |
陈晓光,杨秀媛,卜思齐,等. 考虑经济功能性的风电场储能系统容量配置[J]. 发电技术,2022, 43(2): 341-352.
|
| [6] |
王苏蓬,张新慧,吴文浩,等. 用于风电平抑的混合储能选型和容量优化配置方法[J]. 智慧电力,2021, 49(9): 16-23.
|
| [7] |
王芝茗. 大规模风电场储能电站建设与运行[M]. 北京:中国电力出版社,2017: 29.
|
| [8] |
|
| [9] |
陈玉华. 新型清洁能源技术:化学和太阳能电池新技术[M]. 北京:知识产权出版社,2019: 117.
|
| [10] |
Mckinsey & Company. Net-zero power: Long duration energy storage for a renewable grid [R]. LDES Council: Mckinsey & Company, 2021.
|
| [11] |
|
| [12] |
|
| [13] |
刘宗浩,邹毅,高素军. 电力储能用液流电池技术[M]. 北京:机械工业出版社,2022: 262.
|
| [14] |
中华人民共和国住房和城市建设部. 风光储联合发电站设计标准:GB/T 51437—2021[S]. 北京:中国计划出版社,2021: 11.
|
| [15] |
刘纪福. 余热回收原理与设计[M]. 哈尔滨:哈尔滨工业大学出版社,2016: 331.
|
| [16] |
|
| [17] |
唐西胜,齐智平,孔力. 电力储能技术及应用[M]. 北京:机械工业出版社,2019: 87.
|
/
| 〈 |
|
〉 |