氢气乙醇混合物层流燃烧速度及火焰不稳定性研究

张璇,王筱蓉,张嘉玮,张衍

分布式能源 ›› 2023, Vol. 8 ›› Issue (2) : 61-66.

PDF(5151 KB)
PDF(5151 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (2) : 61-66. DOI: 10.16513/j.2096-2185.DE.2308208
应用技术

氢气乙醇混合物层流燃烧速度及火焰不稳定性研究

作者信息 +

Study on Laminar Burning Velocity and Flame Instability of Hydrogen-Ethanol Mixture

Author information +
文章历史 +

摘要

氢气是一种高效的添加剂,可改善乙醇燃料的燃烧特性,为更好地应用于燃烧装置,有必要研究其层流燃烧特性。在初始压力为0.1及0.4 MPa,初始温度为400 K,等效比范围为0.7~1.4,氢气比例为20%、50%和80%下进行实验,采用定压法(constant pressure method,CPM)得到层流燃烧速度(laminar burning velocity,LBV)。对火焰发展不同阶段的火焰形貌进行研究,当火焰表面的大裂纹分裂出现小裂纹,并导致新细胞再生时,火焰变得不稳定;还研究流体动力学效应和热扩散效应对火焰固有不稳定性的影响。结果表明:LBV随着氢气比例的增加而增加,在富氢状态下其提升效果更加显著;流体动力不稳定性随着压力的增加而增加,热扩散不稳定性对压力变化不敏感;此外,增加氢气比例或初始压力将使火焰更早变得不稳定。

Abstract

Hydrogen is an efficient additive to improve the combustion characteristics of ethanol fuels. For better application in combustion devices, it is necessary to study its laminar combustion characteristics. The experiments are conducted at an initial pressure of 0.1, 0.4 MPa, an initial temperature of 400 K, an equivalent ratio in the range of 0.7~1.4, and the H2 ratios of 20%, 50% and 80%. The laminar burning velocity (LBV) is obtained using the constant pressure method (CPM). The flame morphology is studied at different stages of flame development, and the flame becomes unstable when the large cracks on the flame surface are split into small cracks and led to the regeneration of new cells. The effects of hydrodynamics and thermal diffusion on the inherent instability of the flame are also investigated. The results show that the LBV increases with the increase of hydrogen proportion, and the enhancement effect is more significant in the hydrogen-rich state. The hydrodynamic instability increases with the increase of pressure, and the thermal diffusion instability is insensitive to the pressure change. In addition, increasing the hydrogen ratio or initial pressure can cause the flame to suffer from instability earlier.

关键词

氢气-乙醇 / 定容燃烧弹 / 层流燃烧速度(LBV) / 热扩散不稳定

Key words

hydrogen-ethanol / constant volume combustion bomb / laminar burning velocity (LBV) / thermal diffusion instability

引用本文

导出引用
张璇, 王筱蓉, 张嘉玮, . 氢气乙醇混合物层流燃烧速度及火焰不稳定性研究[J]. 分布式能源. 2023, 8(2): 61-66 https://doi.org/10.16513/j.2096-2185.DE.2308208
Xuan ZHANG, Xiaorong WANG, Jiawei ZHANG, et al. Study on Laminar Burning Velocity and Flame Instability of Hydrogen-Ethanol Mixture[J]. Distributed Energy Resources. 2023, 8(2): 61-66 https://doi.org/10.16513/j.2096-2185.DE.2308208
中图分类号: TK6   

参考文献

[1]
刘沅昆,张维静,张艳,等. 面向新型电力系统的新能源与储能联合规划方法[J]. 智慧电力2022, 50(10): 1-8.
LIU Yuankun, ZHANG Weijing, ZHANG Yan, et al. Joint planning method of renewable energy and energy storage for new-type power system[J]. Smart Power, 2022, 50(10): 1-8.
[2]
雷超,李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术2021, 42(2): 207-217.
LEI Chao, LI Tao. Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology, 2021, 42(2): 207-217.
[3]
ATVEEV S S, IDRISOV D V, MATVEEV S G, et al. Laminar burning velocities of surrogate components blended with ethanol[J]. Combust. Flame, 2019, 209: 389-393.
[4]
WU L. Numerical study on the kinetic effects of hydrogen addition on the thermal characteristics of lamina methane diffusion flames[J]. International Journal of Chemical Reactor Engineering, 2018, 75: 1-18.
[5]
PIO G, SALZANO E, CIVILE I, et al. Laminar burning velocity of methane, hydrogen, and their mixtures at extremely low-temperature conditions[J]. Energy & Fuels, 2018, 32(8): 8830-8836.
[6]
PALMA V, RUOCCO C, MELONI E, et al. Oxidative steam reforming of ethanol on mesoporous silica supported PtNi/CeO2 catalysts[J]. Int. J. Hydrogen Energy, 2017, 42: 1598-1608.
[7]
LI G S, ZHANG Z H, LIANG J J, et al. Effects of hydrogen addition on the premixed laminar-flames of ethanol-air gaseous mixtures: An experimental study[J]. Int. J. Hydrogen Energy, 2012, 37: 4490-4501.
[8]
XU C S, WU S Y, OPPONG F, et al. Experimental and numerical studies of laminar flame characteristics of ethyl acetate with or without hydrogen addition[J]. Int. J. Hydrogen Energy, 2020, 45: 20391-20399.
[9]
WEI Z L, ZHEN H S, FU J, et al. Experimental and numerical study on the laminar burning velocity of hydrogen enriched biogas mixture[J]. Int. J. Hydrogen Energy, 2019, 44: 22240-22249.
[10]
LI C Q, CHENG X B, WEI W M, et al. Effects of hydrogen addition on laminar flame speeds of methane, ethane and propane: Experimental and numerical analysis[J]. Int. J. Hydrogen Energy, 2017, 45: 24055-24066.
[11]
WANG Z H, WANG S X, WHIDDON R, et al. Effect of hydrogen addition on laminar burning velocity of CH4/DME mixtures by heat flux method and kinetic modelling [J]. Fuel, 2018, 232: 729-742.
[12]
FRANCIS O, XU C, LUO Z, et al. Cellularization of 2-methylfuran expanding spherical flame[J]. Combust. Flame, 2019, 206: 379-389.
[13]
SUN Z Y, LIU F, BAO X, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames[J]. Int. J. Hydrogen Energy, 2012, 9: 7889-7899.
[14]
LAMA L F M G, PIZZUTI L, SOTTON J, et al. Experimental investigation of hydrous ethanol/air flame front instabilities at elevated temperature and pressures[J]. Fuel, 2021, 1: 19555.
[15]
EKENECHUKWU C O, HAYAKAWA A, NAGANO Y, et al. Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air[J]. Int. J. Hydrogen. Energy, 2014, 5: 2409-2417.
[16]
FURSENKO R, MINAEV S, NAKAMURA H, et al. Cellular and sporadic flame regimes of low-Lewis-number stretched premixed flames[J]. Proc. Combust. Inst., 2013, 1: 981-988.
[17]
OPPONG F, LUO Z Y, LI X, et al. Investigations on laminar premixed flame characteristics of ethyl acetate[J]. Combust. Flame, 2021, 230: 111454.
[18]
DAYMA G, HALTER F, FOUCHER F, et al. Laminar burning velocities of C4-C7 ethyl esters in a spherical combustion chamber: Experimental and detailed kinetic modeling[J]. Energy Fuels, 2012, 26: 6669-6677.
[19]
许健. 低热值气体燃料发动机燃烧过程及火焰稳定性研究[D]. 北京:北京交通大学,2014.
XU Jian. Study on combustion process and flame stability of low calorific value gaseous fuel engine[D]. Beijing: Beijing Jiaotong University, 2014.
[20]
姜延欢. 合成气预混火焰稳定性及传播特性研究[D]. 北京:北京交通大学,2019.
JIANG Yanhuan. Study on the stability and propagation characteristics of syngas premix flame[D]. Beijing: Beijing Jiaotong University, 2019.
[21]
KELLEY A P, LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combust. Flame, 2009, 156: 1844-1851.
[22]
ADDABBO R, BECHTOLD J K, MATALON M. Wrinkling of spherically expanding flames[J]. Proceedings of the Combustion Institute, 2002, 29: 1527-1535.

基金

江苏省研究生创新基金项目(SJCX22_1913)

PDF(5151 KB)

Accesses

Citation

Detail

段落导航
相关文章

/