一种基于基本拓扑的光伏用高增益变换器

邢星围,冯硕,安金海,张畅

分布式能源 ›› 2023, Vol. 8 ›› Issue (2) : 67-75.

PDF(3141 KB)
PDF(3141 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (2) : 67-75. DOI: 10.16513/j.2096-2185.DE.2308209
应用技术

一种基于基本拓扑的光伏用高增益变换器

作者信息 +

A High Gain Converter for Photovoltaic Based on Basic Topologies

Author information +
文章历史 +

摘要

近年来,光伏发电作为重要的补充能源,广泛应用于生产生活中。为最大化光伏输入,DC/DC变换器被用来作为光伏输入侧与负载侧的阻抗匹配。而传统的变换器拓扑受器件特性、结构等因素的约束,并不适用于并网或高压直流汇流等场景,为此,基于基本变换器拓扑,提出一种组合式的适用于光伏的高增益DC/DC变换器。在理论上详细分析变换器的拓扑结构、工作原理、电路参数设计及其性能;同时,在PSIM中搭建仿真模型,并搭建了一台250 W、48 V/300 V的实验样机,实验及仿真表明了相关分析的正确性。与同类型变换器相比,所提出的变换器具有增益高、器件应力低、输入输出电流连续、驱动电路简单的特点,其拓扑具有工程使用价值。

Abstract

In recent years, as an important supplementary energy source, photovoltaic power generation has been widely used in production and life. In order to maximize the photovoltaic input, the DC/DC converter is used as the impedance matching between the photovoltaic input side and the load side. The traditional converter topology is constrained by factors such as device characteristics and is not suitable for grid-connected or high-voltage DC confluence scenarios. Therefore, based on the basic converter topology, this paper proposes a combined high-gain DC/DC converter suitable for photovoltaics. In this paper, the topology, working principle, circuit parameter design and performance analysis of the converter are analyzed in detail. At the same time, a simulation model is built in PSIM and a 250 W, 48 V/300 V experimental prototype is built. Experiments and simulations show the correctness of the relevant analysis. Compared with the same type of converter, the proposed converter has the characteristics of high gain, low device stress, continuous input and output current, and simple drive circuit. The proposed topology has engineering application value.

关键词

高增益 / 低应力 / DC-DC变换器 / 光伏组件

Key words

high gain / low voltage stress / DC-DC converters / photovoltaic modules

引用本文

导出引用
邢星围, 冯硕, 安金海, . 一种基于基本拓扑的光伏用高增益变换器[J]. 分布式能源. 2023, 8(2): 67-75 https://doi.org/10.16513/j.2096-2185.DE.2308209
Xingwei XING, Shuo FENG, Jinhai AN, et al. A High Gain Converter for Photovoltaic Based on Basic Topologies[J]. Distributed Energy Resources. 2023, 8(2): 67-75 https://doi.org/10.16513/j.2096-2185.DE.2308209
中图分类号: TK51; TM46   

参考文献

[1]
姚玉璧,郑绍忠,杨扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报2022, 43(10): 524-535.
YAO Yubi, ZHENG Shaozhong, YANG Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficientcy in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535.
[2]
KSATER M, BORTIS L, KOLAR J W. Classification and comparative evaluation of PV panel-integrated DC-DC converter concepts[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2511-2526.
[3]
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术2022, 43(3): 392-404.
XIAO Yao, NIU Wenze, WEI Gaosheng, et al. Review on research status and developing tendency of solar photovoltaic/thermal technology[J]. Power Generation Technology, 2022, 43(3): 392-404.
[4]
张磊,向紫藤,余朋军,等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力2021, 49(10): 75-82.
ZHANG Lei, XIANG Ziteng, YU Pengjun, et al. Dynamic environmental economic dispatch of power system with wind farm based on green certificate transaction mechanisms[J]. Smart Power, 2021, 49(10): 75-82.
[5]
PATEL H, AGARWAL V. Matlab-based modeling to study the effects of partial shading on PV array characteristics[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 302-310.
[6]
CORTI F, LAUDANI A, LOZITO G, et al. Model-based power management for smart farming wireless sensor networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(5): 2235-2245.
[7]
YANG Y, SANGWONGWANICH A, BLAABJERG F. Design for reliability of power electronics for grid-connected photovoltaic systems[J]. CPSS Transactions on Power Electronics and Applications, 2016, 1(1): 92-103.
[8]
TANG Z T, YANG Y G, BLAABJERG F. Power electronics: The enabling technology for renewable energy integration[J]. CSEE Journal of Power and Energy Systems, 2022, 8(1): 39-52.
[9]
FARAHAT M A, METWALLY H M B, MOHAMED A A. Optimal choice and design of different topologies of DC-DC converter used in PV systems, at different climatic conditions in Egypt[J]. Renewable Energy, 2012, 43: 393-402.
[10]
任向阳,周攀,戴朝波. 适用于光伏发电直流并网的DC-DC变换器[J]. 分布式能源2020, 5(2): 27-34.
REN Xiangyang, ZHOU Pan, DAI Zhaobo. DC-DC converter for DC grid-connected photovoltaic power generation system[J]. Distributed Energy, 2020, 5(2): 27-34.
[11]
TAGHVAEE M H, RADAZI M A M, MOOSAVAIN S M, et al. A current and future study on non-isolated DC-DC converters for photovoltaic applications[J]. Renewable and Sustainable Energy Reviews, 2013, 17: 216-227.
[12]
SARAVANAN S, BABU N R. Design and development of single switch high step-up DC-DC converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2): 855-863.
[13]
QIN L, ZHOU L, HASSAN W, et al. A family of transformer-less single-switch dual-inductor high voltage gain Boost converters with reduced voltage and current stresses[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5674-5685.
[14]
LI H, CHEN L, SUN X, et al. High step-up combined Boost-Cuk converter with switched-inductor[J]. IET Power Electronics, 2022, 15: 1664-1674.
[15]
HU J, SHAN K W, CHENG K W, et al. Overview of power converter control in microgrids: Challenges, advances, and future trends[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9907-9922.
[16]
WU X, SHI W, DU J. Dual-switch Boost DC-DC converter for use in fuel-cell-powered vehicles[J]. IEEE Access, 2019, 7: 74081-74088.
[17]
荣德生,王宁,孙瑄瑨. 一种具有零纹波输出的高增益耦合电感Boost变换器[J]. 太阳能学报2022, 43(9): 129-136.
RONG Desheng, WANG Ning, SUN Xuanjin. A zero-ripple output-current high-gain Boost converter with coupled inductance[J]. Acta Energiae Solars Sinica, 2022, 43(9): 129-136.
[18]
AHMAD J, PERVEZ I, SARWAR A, et al. Performance analysis and hardware-in-the-Loop (HIL) validation of single switch high voltage gain DC-DC converters for MPP tracking in solar PV system[J]. IEEE Access, 2021, 9: 48811-48830.
[19]
LI G L, JIN X, CHEN X Y, et al. A novel quadratic Boost converter with low inductor currents[J]. CPSS Transactions on Power Electronics and Applications, 2020, 5(1): 1-10.
[20]
HEYDARI M, KHORAMIKIA H, FATEMI A. High-voltage gain SEPIC-based DC-DC converter without coupled inductor for PV systems[J]. IET Power Electronics, 2019, 12(8): 2118-2127.
[21]
ABDEL-RAHIM O, WANG H Y. A new high gain DC-DC converter with model predictive-control based MPPT technique for photovoltaic systems[J]. CPSS Transactions on Power Electronics and Applications, 2020, 5(2): 191-200.
[22]
岳舟. 高电压增益混合型DC-DC变换器研究[J]. 电力系统保护与控制2021, 49(21): 113-122.
YUE Zhou. A hybrid DC-DC converter with higher voltage gain[J]. Power System Protection and Control, 2021, 49(21): 113-122.
[23]
PIRES V F, DANIEL F, SARWAR A, et al. A photovoltaic generator system with a DC/DC converter based on an integrated Boost-Cuk topology[J]. Solar Energy, 2016, 136: 1-9.
[24]
AHMAD J, ZAID M, SARWAR A, et al. A new transformerless quadratic Boost converter with high voltage gain[J]. Smart Science, 2020, 8(3): 163-183.
[25]
SADAF J, BHASKAR M S, MERAJ M, et al. A novel modified switched inductor Boost converter with reduced switch voltage stress[J]. IEEE Transactions on Industrial Electronics, 2020, 68(2): 1275-1289.
[26]
LAKSHMI M, HEMANMALINI S. Nonisolated high gain DC-DC converter for DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1205-1212.
[27]
张民,周明珠,韦正怡,等. 一种集成Y源网络的高升压DC-DC变换器[J]. 太阳能学报2022, 43(10): 499-506.
ZHANG Min, ZHOU Mingzhu, WEI Zhengyi, et al. A Y-source network integrated high voltage step-up DC-DC converter[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 499-506.
[28]
李洪珠,黄陈辉,刘飞扬,等. 含倍压单元的磁集成Boost-Cuk组合变换器[J]. 电力电子技术2021, 55(9): 103-107.
LI Hongzhu, HUANG Chenhui, LIU Feiyang, et al. Magnetic integrated Boost-Cuk combined converter with voltage doubler uint [J]. Power Electronics, 2021, 55(9): 103-107.
[29]
QIN L, ZHOU L, HASSAN W, et al. A family of transformer-less single-switch dual-inductor high voltage gain Boost converters with reduced voltage and current stresses[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5674-5685.
[30]
LEE S W, DO H L. Quadratic Boost DC-DC converter with high voltage gain and reduced voltage stresses[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2397-2404.
[31]
YANG P, XU J P, ZHOU G Y, et al. A new quadratic Boost converter with high voltage step-up ratio and reduced voltage stress[C]//2012 IEEE 7th International Power Electronics and Motion Control Conference. Harbin, China: IEEE, 2012: 1164-1168.
[32]
NARESH S V K, PEDDAPATI S, ALGHAYTHI M. Non-isolated high gain quadratic Boost converter based on inductor's asymmetric input voltage[J].IEEE Access, 2021, 9: 162108-162121.

PDF(3141 KB)

Accesses

Citation

Detail

段落导航
相关文章

/