PDF(1747 KB)
PDF(1747 KB)
PDF(1747 KB)
基于多模态时频图融合的风电机组齿轮箱故障诊断方法
Fault Diagnosis Method of Wind Turbine Gearbox Based on Multi-Mode Time-Frequency Image Fusion
特征提取是故障诊断问题的关键,风电机组齿轮箱负载多变,振动数据量大、信息密度低,导致多模态融合诊断方法的特征学习性能和计算成本难以兼顾。为此,提出了基于多模态时频图融合的风电机组齿轮箱故障诊断方法。首先,使用小波包分解算法对齿轮箱振动数据集进行故障特征分析;然后,将所得分解子信号和原始信号分别转化为二维时频图像,形成体现小波域和时频域的互补故障特征;最后,利用卷积神经网络(convolutional neural networks, CNN)分别学习图像纹理的深层特征并进行特征融合,训练基于CNN-ViT(vision transformer)的多模态故障诊断模型。以凯斯西储大学齿轮箱轴承数据进行验证,所提模型在变负载和未知故障下,相比其他单模态和多模态方法具有较高的准确率,时频图融合方法能够以较低计算成本实现小波域和时频域双模态的故障特征学习。
Feature extraction is the key to the fault diagnosis problem, and the variable load of wind turbine gearboxes, large amount of vibration data and low information density make it difficult to balance the feature learning performance and computational cost of multimodal fusion diagnosis method. To this end, a wind turbine gearbox fault diagnosis method based on multimodal time-frequency map fusion is proposed. First, a wavelet packet decomposition algorithm is used to analyze the fault features of the gearbox vibration data set; then, the decomposed sub-signal and the original signal are transformed into two-dimensional time-frequency images to form complementary fault features reflecting the wavelet domain and the time-frequency domain; finally, a convolutional neural network (CNN) is used to learn the deep features of the image texture and fuse them separately to train a CNN-ViT (vision transformer) multimodal fault diagnosis model. The proposed model is validated with Case Western Reserve University gearbox bearing data, and has higher accuracy compared with other unimodal and multimodal methods under variable load and unknown faults, and the time-frequency map fusion method can realize the fault feature learning in both wavelet domain and time-frequency domain dual modality with lower computational cost.
风电机组齿轮箱 / 故障诊断 / 小波包分析 / 多模态融合 / 图像分类
wind turbine gear box / fault diagnosis / wavelet packet analysis / multimodal fusion / image classification
| [1] |
李辉,胡姚刚,李洋,等. 大功率并网风电机组状态监测与故障诊断研究综述[J]. 电力自动化设备,2016, 36(1): 6-16.
|
| [2] |
张真真,吴立东,陈晓敏,等. 基于支持向量机的风电机组变桨系统故障诊断[J]. 分布式能源,2021, 6(3): 70-75.
|
| [3] |
|
| [4] |
陈雪峰,郭艳婕,许才彬,等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程,2020, 31(2): 175-189.
|
| [5] |
李浪,刘辉海,赵洪山. 风力发电机振动监测与故障诊断方法综述[J]. 电网与清洁能源,2017, 33(8): 94-100, 108.
|
| [6] |
|
| [7] |
|
| [8] |
李东东,刘宇航,赵阳,等. 基于改进生成对抗网络的风机行星齿轮箱故障诊断方法[J]. 中国电机工程学报,2021, 41(21): 7496-7507.
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
薛阳,雷文平,岳帅旭,等. 多模态学习方法在滚动轴承故障诊断中的应用[J]. 机械科学与技术,2022, 41(8): 1149-1153.
|
| [13] |
马临超,杨捷,肖鹏,等. 基于新型卷积神经网络的非侵入式负载监测方法[J]. 智慧电力,2022, 50(4): 96-102.
|
| [14] |
蒋爱国,符培伦,谷明,等. 基于多模态堆叠自动编码器的感应电机故障诊断[J]. 电子测量与仪器学报,2018, 32(8): 17-23.
|
| [15] |
付晓敏. 基于小波变换的改进混合蛙跳-差分进化-神经网络预测模型的短期风速预测[J]. 分布式能源,2021, 6(6): 38-44.
|
| [16] |
张利慧,李晓波,俎海东,等. 风力发电机组滚动轴承故障振动诊断方法综述[J]. 内蒙古电力技术,2022, 40(3): 7-12.
|
| [17] |
黄树帮,陈耀,金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术,2021, 42(1): 60-68.
|
| [18] |
高阳,谢丽蓉,叶家豪,等. 自适应提升及预测误差修正的风电功率超短期预测[J]. 智慧电力,2022, 50(8): 14-21.
|
| [19] |
崔宝珍,王斌,任川,等. 应用时频图像纹理特征的行星齿轮故障诊断[J]. 振动.测试与诊断,2022, 42(6): 1141-1146, 1245.
|
| [20] |
|
| [21] |
任泽裕,王振超,柯尊旺,等. 多模态数据融合综述[J]. 计算机工程与应用,2021, 57(18): 49-64.
|
| [22] |
李世玲,李治,李合生. 基于小波包能量特征的滚动轴承故障监测方法[J]. 系统仿真学报,2003, 15(1): 76-80, 83.
|
| [23] |
崔玲丽,安加林,王鑫,等. 基于变尺度Lempel-Ziv的滚动轴承损伤程度评估方法[J]. 振动工程学报,2022, 35(5): 1250-1258.
|
/
| 〈 |
|
〉 |