PDF(1164 KB)
PDF(1164 KB)
PDF(1164 KB)
汽动空压机和电动空压机的压缩空气供应方式对比分析
Comparative Analysis of Compressed Air Supply Methods Between Steam-Driven and Electric Air Compressors
近年来,在“碳达峰、碳中和”目标下工业企业节能降耗受到广泛关注,其中,作为工业企业第二大动力源,空压机的节能提效是当下重点工作之一。为此,对电机驱动、背压供热机组蒸汽驱动、抽凝供热机组蒸汽驱动和抽凝非供热机组蒸汽驱动等4种不同驱动形式的空压机进行技术分析和研究,主要从到户压缩空气一次能源消耗情况、碳排放和能源成本3方面进行分析对比。结果表明:电动空压机的碳排放最低,能源成本最高;抽凝供热机组和抽凝非供热机组所耦合的汽动空压机,其到户压缩空气一次能源消耗情况和碳排放都明显较差;背压供热机组所耦合的汽动空压机在到户压缩空气一次能源消耗情况、碳排放方面均好于电动空压机。
In recent years, under the goal of "carbon peak and carbon neutrality", energy conservation and consumption reduction in industrial enterprises have attracted wide attention. As the second largest power source, the energy saving and efficiency improvement of air compressor is one of the key work at present. In this paper, technical analysis and research are carried out on four different driving forms of air compressors that are electric-driven, steam-driven of back pressure heating unit, steam-driven of condensing heating unit and steam-driven of condensing non-heating unit. Combined with the technical characteristics, the primary energy consumption, carbon emission and energy cost of compressed air are analyzed and compared. The results show that electric air compressor has the lowest carbon emissions and the highest energy costs, and the steam-driven air compressor coupled with the condensing heating unit or condensing non-heating unit has the worst effect than others in the primary energy consumption and carbon emissions. The steam-driven air compressor coupled with the back pressure heating unit is better than the electric air compressor in terms of primary energy consumption and carbon emission of compressed air.
压缩空气集中供应 / 空压机 / 供热机组 / 碳排放 / 能源成本
centralized supply of compressed air / air compressor / heating unit / carbon emission / energy cost
| [1] |
钟史明. 能源与环境:节能减排理论与研究[M]. 南京:东南大学出版社,2017: 8-12.
|
| [2] |
石映飞. 浅析压缩空气系统节能[J]. 冶金设备,2022(): 118-121.
S1
S1
|
| [3] |
文贤馗,张世海,盛勇,等. 压缩空气储能膨胀机进气阀严密性试验[J]. 分布式能源,2017, 2(6): 26-30.
|
| [4] |
秦宏波,胡寿根. 工业压缩空气系统优化潜力研究[J]. 流体机械,2010, 38(2): 49-52, 8.
|
| [5] |
金巍. 浅谈压缩空气系统节能[J]. 压缩机技术,2010(6): 42-44.
|
| [6] |
严妉妉. 大型发电厂建设集中供气空压站方案研究[J]. 能源研究与利用,2022(1): 52-55.
|
| [7] |
彭博,屈福军. 浅谈核电厂应急压缩空气生产系统的故障探究及处理[J]. 科技展望,2016, 26(33): 30.
|
| [8] |
傅旭,李富春,杨欣,等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源,2020, 5(3): 34-38.
|
| [9] |
潘华,高旭,姚正,等. 计及储能效益的综合能源系统利益分配机制研究[J]. 智慧电力,2022, 50(5): 25-32.
|
| [10] |
贾振源. 关于压缩空气系统能耗及节能措施的理论研究[J]. 科技信息,2012 (12): 102-103.
|
| [11] |
张思,杨晓雷,阙凌燕,等. 高比例光伏发电对浙江电网电力平衡的影响及应对策略[J]. 浙江电力,2022, 41(11): 9-16.
|
| [12] |
虞国平,张新胜,屠海彪,等. 火电机组深度调峰工况辅机安全控制技术研究[J]. 浙江电力,2021, 40(2): 85-90.
|
| [13] |
王晓露. 火电厂热电联产机组与压缩空气储能系统热力学耦合研究[D]. 北京:中国科学院大学(中国科学院工程热物理研究所), 2021.
|
| [14] |
于海存,殷建华,李荣丽,等. 基于电网考核指标的火电机组一次调频仿真与优化[J]. 内蒙古电力技术,2022, 40(5): 80-85.
|
| [15] |
李姚旺,苗世洪,尹斌鑫,等. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术,2020, 41(1): 41-49.
|
| [16] |
高琳婕. 火电厂集中式压缩空气系统设计探讨[J]. 能源研究与利用,2016(1): 41-43.
|
| [17] |
罗晓莹. 大型钢铁企业中集中空压站的设置[J]. 冶金动力,2016(11): 55-57.
|
| [18] |
石慧,王洋,马汀山,等. 多机组、多模式的热电联产厂级供热优化[J]. 热力发电,2022, 51(1): 123-129.
|
| [19] |
梁占伟,张磊,徐亚涛,等. 双机联调抽汽-高背压联合供热分析与优化[J]. 动力工程学报,2020, 40(3): 247-255.
|
| [20] |
陈仲渊,董益华,叶圣策,等. 基于大型火电机组的压缩空气集中供应项目运行经济性分析[J]. 能源研究与管理,2019(3): 94-97, 108.
|
| [21] |
许平,于超,潘华引,等. 联合循环热电联产机组集中供压缩空气的应用[J]. 能源研究与利用,2017(2): 40-42.
|
| [22] |
晁承龙,王洪玲,陈允梅. 汽轮机拖动压缩机技术运行总结[J]. 化肥工业,2010, 37(6): 48-50.
|
| [23] |
代黎. 工业园集中空压站选型设计[J]. 企业科技与发展,2019(3): 57-58.
|
/
| 〈 |
|
〉 |