计及环境成本的含储能冷热电联供系统多目标优化和运行策略研究

陶鸿俊,周志贵,谢婧怡,王奕钦,杨静茹

分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 30-39.

PDF(1433 KB)
PDF(1433 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 30-39. DOI: 10.16513/j.2096-2185.DE.2308305
学术研究

计及环境成本的含储能冷热电联供系统多目标优化和运行策略研究

作者信息 +

Research on Multi-Objective Optimization and Operation Strategy of Combined Cold, Heat and Power System With Energy Storage Considering Environmental Cost

Author information +
文章历史 +

摘要

冷热电联供(combined cooling, heating and power, CCHP)系统能够同时满足用户冷热电负荷需求,实现热量梯级利用和能量高效供给。但CCHP系统内部能量耦合程度高,各种能量间相互影响,为CCHP系统的容量配置和能量高效供给带来挑战。为此,建立了含储能和可再生能源的CCHP系统,提出2种余热优先利用运行策略,采用多目标遗传算法对系统设备容量进行优化确定,并对各类运行指标进行分析。结果表明:运行策略二(回收余热优先供热)的“3E”综合指标为0.344高于运行策略一(回收余热优先制冷);运行策略二的年值节约率为4.5%经济性优于运行策略一;运行策略二的各类污染物减排率均高于运行策略一,表现出良好的环境效益。

Abstract

Combined cooling, heating and power (CCHP) system can meet the user's demand for cold and hot power load at the same time, and can realize heat cascade utilization and efficient energy supply. However, the internal energy coupling degree of CCHP system is high, and various energies affect each other, which brings challenges to the capacity configuration and efficient energy supply of CCHP system. Therefore, a CCHP system with energy storage and renewable energy technology is established, two operation strategies for preferential utilization of waste heat are proposed, and the multi-objective genetic algorithm is used to optimize and determine the capacity of the system equipment, and various operating indicators are analyzed. The results show that the "3E" comprehensive index of operation strategy 2 (recovery of waste heat priority heat supply) is 0.344, which is higher than that of operation strategy 1 (recovery of waste heat priority cooling), and the annual value saving rate of operation strategy 2 is 4.5%, which is better than that of operation strategy 1. The emission reduction rate of various pollutants in operation strategy 2 is higher than that of operation strategy 1, showing good environmental benefits.

关键词

冷热电联供(CCHP)系统 / 储能技术 / 多目标优化 / 遗传算法 / 运行策略 / 可再生能源

Key words

combined cooling, heating and power (CCHP) system / energy storage technology / multi-objective optimization / genetic algorithm / operation strategy / renewable energy utilization

引用本文

导出引用
陶鸿俊, 周志贵, 谢婧怡, . 计及环境成本的含储能冷热电联供系统多目标优化和运行策略研究[J]. 分布式能源. 2023, 8(3): 30-39 https://doi.org/10.16513/j.2096-2185.DE.2308305
Hongjun TAO, Zhigui ZHOU, Jingyi XIE, et al. Research on Multi-Objective Optimization and Operation Strategy of Combined Cold, Heat and Power System With Energy Storage Considering Environmental Cost[J]. Distributed Energy Resources. 2023, 8(3): 30-39 https://doi.org/10.16513/j.2096-2185.DE.2308305
中图分类号: TK01   

参考文献

[1]
崔林,唐沂媛. 冷热电联供型微电网优化运行及敏感性分析[J]. 电力工程技术2017, 36(6): 138-143.
CUI Lin, TANG Yiyuan. Optimal operation and sensitivity analysis of combined cooling, heating and power microgrid[J]. Power Engineering Technology, 2017, 36(6): 138-143.
[2]
李玉君. 含冷热电联供系统的微能源网运行优化研究[D]. 北京:北京交通大学,2018.
LI Yujun. Research on optimization of micro-energy grid operation with combined cooling, heating and power system[D]. Beijing: Beijing Jiaotong University, 2018.
[3]
欧阳斌,袁志昌,陆超,等. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术2020, 41(1): 19-29.
OYANG Bin, YUAN Zhichang, LU Chao, et al. Research on optimal operation of cold-thermal-electric integrated energy system considering source-load-storage multi-energy complementarity[J]. Power Generation Technology, 2020, 41(1): 19-29.
[4]
曹芷健,刘继春,武云霞,等. 基于Wasserstein距离多状态建模的冷热电联供系统优化配置[J]. 电气应用2018, 37(7): 22-29.
CAO Zhijian, LIU Jichun, WU Yunxia, et al. Optimal configuration of combined cooling, heating and power system based on Wasserstein distance multi-state modeling[J]. Electrical Application, 2018, 37(7): 22-29.
[5]
王锐,顾伟,吴志. 含可再生能源的热电联供型微网经济运行优化[J]. 电力系统自动化2011, 35(8): 22-27.
WANG Rui, GU Wei, WU Zhi. Optimization of economic operation of combined heat and power microgrid with renewable energy[J]. Automation of Electric Power Systems, 2011, 35(8): 22-27.
[6]
陈厚合,杜欢欢,张儒峰,等. 考虑风电不确定性的混合储能容量优化配置及运行策略研究[J]. 电力自动化设备2018, 38(8): 174-182, 188.
CHEN Houhe, DU Huanhuan, ZHANG Rufeng, et al. Research on the optimal configuration and operation strategy of hybrid energy storage capacity considering the uncertainty of wind power[J]. Electric Power Automation Equipment, 2018, 38(8): 174-182, 188.
[7]
晏伟,吴新林,方景刚. 含环境成本和多种储能的综合能源微网优化运行[J]. 电力需求侧管理2021, 23(1): 67-71, 96.
YAN Wei, WU Xinlin, FANG Jinggang. Optimal operation of integrated energy microgrid with environmental cost and multiple energy storage[J]. Power Demand Side Management, 2021, 23(1): 67-71, 96.
[8]
程韧俐,梁顺,傅强,等. 基于虚拟储能的微网风光储容量优化配置方法研究[J]. 可再生能源2021, 39(3): 372-379.
CHENG Renli, LIANG Shun, FU Qiang, et al. Research on optimal allocation method of microgrid wind and solar storage capacity based on virtual energy storage[J]. Renewable Energy, 2021, 39(3): 372-379.
[9]
曾依浦,戴毅茹,王坚. 基于改进NSGA-Ⅲ的面向碳目标的区域综合能源系统容量优化[J]. 制造业自动化2022, 44(5): 134-139.
ZENG Yipu, DAI Yiru, WANG Jian. Capacity optimization of regional integrated energy system based on improved NSGA-III.[J]. Manufacturing Automation, 2022, 44(5): 134-139.
[10]
储超. 含跨季节储热的综合能源系统容量优化研究[D]. 北京:华北电力大学,2022.
CHU Chao. Research on capacity optimization of integrated energy system including cross-seasonal heat storage[D]. Beijing: North China Electric Power University, 2022.
[11]
杜传铭,陈孟石,杜尚斌,等. 光-气互补冷热电联供系统容量配置与运行研究[J]. 动力工程学报2022, 42(1): 83-93.
DU Chuanming, CHEN Mengshi, DU Shangbin, et al. Research on capacity configuration and operation of light-gas complementary combined cooling, heating and power system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 83-93.
[12]
邹泽宇,刘文泽,蔡泽祥. 基于增广ε-约束法的冷热电联供系统容量优化配置[J]. 广东电力2019, 32(10): 36-44.
ZOU Zeyu, LIU Wenze, CAI Zexiang. Capacity optimization configuration of combined cooling, heating and power system based on augmented ε-constraint method[J]. Guangdong Electric Power, 2019, 32(10): 36-44.
[13]
开赛江,计力,周专,等. 100%可再生能源综合能源系统容量优化配置[J]. 分布式能源2021, 6(4): 34-40.
KAI Saijiang, JI Li, ZHOU Zhuan, et al. Capacity optimal allocation of integrated energy system consisting of 100% renewable energy[J]. Distributed Energy, 2021, 6(4): 34-40.
[14]
刘元园,焦震,王守明,等. 含光伏冷热电联供系统容量优化配置方法[J]. 安徽电气工程职业技术学院学报2021, 26(4): 76-81.
LIU Yuanyuan, JIAO Zhen, WANG Shouming, et al. Capacity optimization allocation method of photovoltaic combined cooling, heating and power system[J]. Journal of Anhui Electrical Engineering Vocational and Technical College, 2021, 26(4): 76-81.
[15]
白保华,丁泽宇,王康,等. 含有光伏发电的分布式能量系统设备容量优化[J]. 热力发电2020, 49(7): 28-34.
BAI Baohua, DING Zeyu, WANG Kang, et al. Equipment capacity optimization of distributed energy system including photovoltaic power generation[J]. Thermal Power Generation, 2020, 49(7): 28-34.
[16]
刘持涛,陈依,林顺富,等. 基于时序聚类的综合能源系统容量优化配置[J]. 电工电能新技术2022, 41(12): 20-27.
LIU Zhitao, CHEN Yi, LIN Shunfu, et al. Capacity optimization allocation of integrated energy system based on time series clustering[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(12): 20-27.
[17]
卫佳惠,尹立敏,周茉. 基于线性混合整数规划的综合能源系统容量优化配置[C]//吉林省电机工程学会.吉林省电机工程学会2022年学术年会获奖论文集. 吉林大学出版社,2022: 11.
WEI Jiahui, YIN Limin, ZHOU Mo. Capacity optimization configuration of integrated energy system based on linear mixed integer programming[C]//Jilin Electrical Engineering Society. Proceedings of the 2022 Annual Conference of Jilin Electrical Engineering Society. Jilin University Press, 2022: 11.
[18]
卫佳惠,尹立敏. 基于线性混合整数规划的综合能源系统容量优化配置[J]. 吉林电力2022, 50(5): 41-45.
WEI Jiahui, YIN Limin. Capacity optimization allocation of integrated energy system based on linear mixed integer programming[J]. Jilin Electric Power, 2022, 50(5): 41-45.
[19]
毛志斌,周俊,陈琦,等. 综合能源系统容量优化配置及其经济效益研究[J]. 价格理论与实践2021, 441(3): 138-141, 168.
MAO Zhibin, ZHOU Jun, CHEN Qi, et al. Research on optimal allocation of capacity and economic benefits of comprehensive energy system[J]. Price Theory & Practice, 2021, 441(3): 138-141, 168.
[20]
帅轩越,王秀丽,黄晶. 多区域综合能源系统互联下的共享储能容量优化配置[J]. 全球能源互联网2021, 4(4): 382-392.
SHUAI Xuanyue, WANG Xiuli, HUANG Jing. Optimal allocation of shared energy storage capacity under multi-regional integrated energy system interconnection[J]. Global Energy Interconnection, 2021, 4(4): 382-392.
[21]
陈曦,曹杰,盛勇,等. 基于布谷鸟搜索算法的天然气储气库综合能源系统容量优化配置研究[J]. 重庆理工大学学报(自然科学), 2021, 35(6): 209-219.
CHEN Xi, CAO Jie, SHENG Yong, et al. Research on capacity optimization allocation of integrated energy system of natural gas storage based on cuckoo search algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35(6): 209-219.)
[22]
翁一武,苏明. 先进微型燃气轮机的特点与应用前景[J]. 热能动力工程2003, 18(2): 111-116.
WENG Yiwu, SU Ming. Features and application prospects of advanced micro gas turbines[J]. Thermal Energy and Power Engineering, 2003, 18(2): 111-116.
[23]
石可颂. 冷热电联供系统控制策略与优化调度研究[D]. 济南:山东大学,2015.
SHI Kesong. Research on control strategy and optimal scheduling of combined cooling, heating and power system[D]. Jinan: Shandong University, 2015.
[24]
刘翕铭,于永进,杨洋. 基于改进麻雀算法的园区综合能源系统优化研究[J]. 智慧电力2021, 49(6): 9-16.
LIU Ximing, YU Yongjin, YANG Yang. Optimization of regional integrated energy system based on improved sparrow algorithm[J]. Smart Power, 2021, 49(6): 9-16.
[25]
FOROUGH A B, ROSHANDEL R. Lifetime optimization frame-work for a hybrid renewable energy system based on receding horizon optimization[J]. Energy, 2018, 150(MA-Y1): 617-630.
[26]
崔树银,常啸,陆奕. 含混合储能的冷热电联供系统运行策略及容量配置[J]. 科学技术与工程2020, 20(13): 5167-5172.
CUI Shuyin, CHANG Xiao, LU Yi. Operation strategy and capacity configuration of a combined cooling, heating and power system with hybrid energy storage[J]. Science Tech-nology and Engineering, 2020, 20(13): 5167-5172.
[27]
梁作放,潘华. 综合能源系统可靠经济运行现状分析与展望[J]. 内蒙古电力技术2020, 38(6): 80-84.
LIANG Zuofang, PAN Hua. Status analysis on reliable and economic operation of integrated energy system and its prospect[J]. Inner Mongolia Electric Power, 2020, 38(6): 80-84.
[28]
李龙锡. 楼宇及区域型分布式能源系统效益评价研究[D]. 大连:大连理工大学,2017.
LI Longxi. Research on benefit evaluation of building and regional distributed energy system[D]. Dalian: Dalian University of Technology, 2017.
[29]
毛晓明,陈深,吴杰康,等. 分时电价机制下含蓄电池微网的优化调度[J]. 电网技术2015, 39(5): 1192-1197.
MAO Xiaoming, CHEN Shen, WU Jiekang, et al. Optimal dispatch of microgrid with battery under time-of-use electricity price mechanism[J]. Power System Technology, 2015, 39(5): 1192-1197.
[30]
YI Y, ZHANG C, KE L, et al. An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage[J]. Applied Energy, 2018, 210: 1151-1166.
[31]
SHIN Y, KOO W Y, KIM T H, et al. Capacity design and operation planning of a hybrid PV-wind-battery-diesel power generation system in the case of Deokjeok Island[J]. Applied Thermal Engineering, 2015, 89: 514-525.
[32]
陈灵敏,吴杰康,唐惠玲,等. 计及综合需求响应的冷热电联供独立微网容量优化配置模型[J]. 南方电网技术2019, 13(10): 44-53.
CHEN Lingmin, WU Jiekang, TANG Huiling, et al. Optimal allocation model of independent microgrid capacity for combined cooling, heating and power in consideration of comprehensive demand response[J]. Southern Power Grid Technology, 2019, 13(10): 44-53.

PDF(1433 KB)

Accesses

Citation

Detail

段落导航
相关文章

/