框架式重力储能系统经济性分析

刘晓辉,袁康,白亚奎,魏旭红

分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 47-53.

PDF(1439 KB)
PDF(1439 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 47-53. DOI: 10.16513/j.2096-2185.DE.2308307
应用技术

框架式重力储能系统经济性分析

作者信息 +

Economic Analysis of Frame Gravity Energy Storage System

Author information +
文章历史 +

摘要

框架式重力储能系统不受地理条件的限制,便于进行规模化的扩展和应用,是实现重力储能未来大规模商业应用的一种有效方式,逐渐受到人们的重视。基于对框架式重力储能系统的结构组成分析和成本计算,对框架式重力储能系统的经济性进行了分析,得到了不同系统容量的框架式重力储能系统的投资成本和平准化储能度电成本,可为框架式重力储能系统的项目建设和运营提供参考。

Abstract

Frame gravity energy storage system is not limited by geographical conditions, easy to scale expansion and application, is an effective way to achieve large-scale commercial applications of gravity energy storage in the future, and gradually received people's attention. Based on the structural composition analysis and cost calculation of the frame gravity energy storage system, the economy of the frame gravity energy storage system is analyzed, and the investment cost and the quasi energy storage power cost of the frame gravity energy storage system with different system capacities are obtained, which can provide references for the construction and operation of the frame gravity energy storage system.

关键词

框架式 / 重力储能 / 经济性分析

Key words

frame / gravity energy storage / economic analysis

引用本文

导出引用
刘晓辉, 袁康, 白亚奎, . 框架式重力储能系统经济性分析[J]. 分布式能源. 2023, 8(3): 47-53 https://doi.org/10.16513/j.2096-2185.DE.2308307
Xiaohui LIU, Kang YUAN, Yakui BAI, et al. Economic Analysis of Frame Gravity Energy Storage System[J]. Distributed Energy Resources. 2023, 8(3): 47-53 https://doi.org/10.16513/j.2096-2185.DE.2308307
中图分类号: TK02   

参考文献

[1]
吴琦,金洋,韩旭. “双碳”目标下的能源发展路径[J]. 有色冶金节能2021, 37(6): 6-9.
WU Qi, JIN Yang, HAN Xu. Energy development path under the “2-stage carbon reduction” goal[J]. Energy Saving Energy of Nonferrous Metallurgy, 2021, 37(6): 6-9.
[2]
林伯强,杨梦琦. 碳中和背景下中国电力系统研究现状、挑战与发展方向[J]. 西安交通大学学报(社会科学版), 2022, 42(5): 1-10.
LIN Boqiang, YANG Mengqi. China's power system research in the context of carbon neutrality: Current status, challenges, and development direction[J]. Journal of Xi'an Jiaotong University(Social Sciences), 2022, 42(5): 1-10.
[3]
孙振新,刘汉强,赵喆,等. 储能经济性研究[J]. 中国电机工程学报2013, 33(): 54-58.
摘要
S
SUN Zhenxin, LIU Hanqiang, ZHAO Zhe, et al. Research on economical efficiency of energy storage[J]. Proceedings of the CSEE, 2013, 33(): 54-58.
S
[4]
傅旭,李富春,杨欣,等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源2020, 5(3): 34-38.
FU Xu, LI Fuchun, YANG Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020, 5(3): 34-38.
[5]
何可欣,马速良,马壮,等. 储能技术发展态势及政策环境分析[J]. 分布式能源2021, 6(6): 45-52.
HE Kexin, MA Suliang, MA Zhuang, et al. Energy storage technology development trend and policy environment analysis[J]. Distributed Energy, 2021, 6(6): 45-52.
[6]
张程翔,丁宁,尹峰,等. 新型储能应用场景与商业模式综述[J]. 分布式能源2022, 7(1): 54-62.
ZHANG Chengxiang, DING Ning, YIN Feng, et al. Overview of new energy storage application scenarios and business models[J]. Distributed Energy, 2022, 7(1): 54-62.
[7]
刘大正,崔咏梅,赵飞. 新型储能商业化运行模式分析与发展建议[J]. 分布式能源2022, 7(5): 46-55.
LIU Dazheng, CUI Yongmei, ZHAO Fei. Operation model analysis and developmental suggestions of new energy storage in commercial application scenarios[J]. Distributed Energy, 2022, 7(5): 46-55.
[8]
CAVA F, KELLY J, PEITZKE W, et al. Advanced rail energy storage: Green energy storage for green energy[M]. Storing Energy, 2016: 69-86.
[9]
FYKE A. The fall and rise of gravity storage technologies[J]. Joule, 2019, 3(3): 625-630.
[10]
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied energy, 2019, 239: 201-206.
[11]
CATHLEEN O'Grady. Gravity Powers batteries for renewable energy[J]. Science, 2021, 372(6541): 446.
[12]
HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain gravity energy storage: A new solution for closing the gap betweenexisting short- and long-term storage technologies[J]. Energy, 2020, 190: 116419.
[13]
EMRANI A, BERRADA A, BAKHOUYA M. Modeling and performance evaluation of the dynamic behavior of gravity energy storage with a wire rope hoisting system[J]. Journal of Energy Storage, 2021, 33: 102154.
[14]
陈云良,刘旻,凡家异,等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术2022, 54(1): 97-105.
CHEN Yunliang, LIU Min, FAN Jiayi, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54(1): 97-105.
[15]
王粟,肖立业,唐文冰,等. 新型重力储能研究综述[J]. 储能科学与技术2022, 11(5): 1575-1582.
WANG Su, XIAO Liye, TANG Wenbing, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582.
[16]
夏焱,万继方,李景翠,等. 重力储能技术研究进展[J]. 新能源进展2022, 10(3): 258-264.
XIA Yan, WAN Ji-fang, LI Jingcui, et al. Research progress of gravity energy storage technology[J]. Advances in New and Renewable Energy, 2022, 10(3): 258-264.
[17]
BERRADA A, LOUDIYI K, ZORKANI I. Sizing and economic analysis of gravity storage[J], Journal of Renewable and Sustainable Energy, 2016, 8(2), 024101.
[18]
BERRADA A, LOUDIYI K, ZORKANI I. System design and economic performance of gravity energy storage[J]. Journal of Cleaner Production, 2017, 156: 317-326.
[19]
RUOSO A C, CAETANO N R, ROCHA L A O. Storage gravitational energy for small scale industrial and residential applications[J]. Inventions, 2019, 4(4): 64.
[20]
BOTHA C D, KAMPER M J. Capability study of dry gravity energy storage[J]. Journal of Energy Storage, 2019, 23: 159-174.
[21]
BERRADA A, EMRANI A, AMEUR A. Life-cycle assessment of gravity energy storage systems for large-scale application[J]. The Journal of Energy Storage, 2021, 40(1): 102825.
[22]
SCHMIDT O, MELCHIOR S, HAWKES A, et al. Projecting the future levelized cost of electricity storage technologies[J]. Joule, 2019, 3(1): 81-100.
[23]
CASTRO M T, ESPARCIA JR E A, OCON J D. A comparative future levelized cost of storage of static electrochemical and mechanical energy storage technologies in 1-mw energy and power applications[J]. Chemical Engineering Transactions, 2022(94): 355-360.
[24]
中华人民共和国建设部. 建筑地基基础设计规范:GB 50007—2011[S]. 北京:中国建筑工业出版社,2011.
[25]
中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2017.
[26]
XU Yan, PEI Jiamei, CUI Liang, et al. The levelized cost of storage of electrochemical energy storage technologies in China[J]. Frontiers in Energy Research, 2022(10). doi.org/10.3389/fenrg.2022.873800.
[27]
何颖源,陈永翀,刘勇,等. 储能的度电成本和里程成本分析[J]. 电工电能新技术2019, 38(9): 1-10.
HE Yingyuan, CHEN Yongchong, LIU Yong, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10.
[28]
徐若晨,张江涛,刘明义,等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术2021, 40(12): 10-18.
XU Ruochen, ZHANG Jiangtao, LIU Mingyi, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12): 10-18.
[29]
王富强,王汉斌,武明鑫,等. 压缩空气储能技术与发展[J]. 水力发电2022, 48(11): 10-15.
WANG Fuqiang, WANG Hanbin, WU Mingxin, et al. Compressed air energy storage technology and development[J]. Water Power, 2022, 48(11): 10-15.
[30]
文军,刘楠,裴杰,等. 储能技术全生命周期度电成本分析[J]. 热力发电2021, 50(8): 24-29.
WEN Jun, LIU Nan, PEI Jie, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50(8): 24-29.

基金

风力发电机组塔筒损伤监测项目(QDYY-E-XN-202203)

PDF(1439 KB)

Accesses

Citation

Detail

段落导航
相关文章

/