一种基于地源热泵耦合蓄能水池的分布式能源系统

马鹏亮

分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 65-72.

PDF(1599 KB)
PDF(1599 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 65-72. DOI: 10.16513/j.2096-2185.DE.2308309
应用技术

一种基于地源热泵耦合蓄能水池的分布式能源系统

作者信息 +

A Distributed Energy System Based on Ground Source Heat Pump Coupled Energy Storage Pool

Author information +
文章历史 +

摘要

以某能源站实际项目为案例,对地源热泵耦合蓄能水池承担基础负荷的分布式能源系统效率及经济性进行研究。通过计算机软件对末端冷热负荷进行逐时模拟,采用地源热泵+蓄能水池承担基础负荷,耦合其他传统能源作为系统调峰和保障的运行方式,确定项目装机比例及计算系统的能源利用率和经济性。研究表明,能源站能源系统根据当地不同时段的能源价格,采用不同的能源组合形式,实现了项目经济、高效、环保运行。对于地源热泵耦合蓄能水池承担基础负荷的分布式能源系统,通过搭建智慧能源管理平台,实现多能协同、智能耦合的运行模式。分布式能源系统与传统能源供应系统相比,不仅可提高能源利用效率和系统经济性,也可提高可再生能源利用率。

Abstract

In this paper, the efficiency and economy of the distributed energy system of the ground source heat pump coupled storage pool bearing the base load were studied by taking the actual project of some energy station as an example.The computer software is used to simulate the terminal cooling and heating load hourly, and the ground source heat pump and energy storage pool are used to undertake the base load, coupled with other traditional energy sources as the operation mode of peak adjustment and guarantee of the system, so as to determine the installed proportion of the project and calculate the energy efficiency and economy of the system.The research shows that the energy system of the energy station adopts different forms of energy mix according to the local energy prices at different times, which realizes the economic, efficient and environmental operation of the project.For the distributed energy system with the base load borne by the ground source heat pump coupled energy storage pool, the intelligent energy management platform is built to realize the operation mode of multi-energy collaboration and intelligent coupling. Compared with traditional energy supply system, distributed energy system can not only improve energy utilization efficiency and system economy, but also improve the utilization rate of renewable energy.

关键词

分布式能源系统 / 综合能源利用率 / 可再生能源利用率 / 经济性运行

Key words

distributed energy system / comprehensive energy efficiency / renewable energy efficiency / economical operation

引用本文

导出引用
马鹏亮. 一种基于地源热泵耦合蓄能水池的分布式能源系统[J]. 分布式能源. 2023, 8(3): 65-72 https://doi.org/10.16513/j.2096-2185.DE.2308309
Pengliang MA. A Distributed Energy System Based on Ground Source Heat Pump Coupled Energy Storage Pool[J]. Distributed Energy Resources. 2023, 8(3): 65-72 https://doi.org/10.16513/j.2096-2185.DE.2308309
中图分类号: TK02   

参考文献

[1]
郭扬. 世界视域下新能源替代化石能源的驱动效应[J]. 中国人口资源环境2022, 32(5): 14-22.
GUO Yang. Driving effects of alternative new energy sources for fossil fuels in the context of the world[J]. China Population, Resources and Environment, 2022, 32(5): 14-22.
[2]
刘涛. 化石能源领域碳减排研究综述[J]. 西南石油大学学报:社会科学版2022, 24(5): 1-10.
LIU Tao. A review of researches on carbon emission reduction of fossil energy[J]. Journal of Southwest Petroleum University: Social Sciences Edition, 2022, 24(5): 1-10.
[3]
谭惠文,赵旭,徐琦沣. 中国化石能源产业转型与投入产出分析[J]. 产业创新研究2022(3): 80-82.
[4]
朱维群,王倩. 碳中和目标下的化石能源利用新技术路线开发[J]. 发电技术2021, 42(1): 3-7.
ZHU Weiqun, WANG Qian. Development of new technological routes for fossil energy utilization under the goal of carbon neutral[J]. Power Generation Technology, 2021, 42(1): 3-7.
[5]
高国强,郑炜博,王照亮,等. 基于油田单井的多能互补分布式能源系统优化[J]. 山东科学2022, 35(3): 43-53.
GAO Guoqiang, ZHENG Weibo, WANG Zhaoliang. Single-well-based complementary distributed multienergy system and optimization[J]. Shandong Science, 2022, 35(3): 43-53.
[6]
郭新志,刘英新,李秋燕,等. 基于智能负荷控制的分布式能源系统调控策略研究[J]. 智慧电力2022, 50(3): 8-14.
GUO Xinzhi, LIU Yingxin, LI Qiuyan, et al. Regulation strategy for distributed energy system based on intelligent load control[J]. Smart Power, 2022, 50(3): 8-14.
[7]
环保领域相关的“十四五”规划政策文件汇总[J]. 资源再生2022(5): 54-59.
Summary of policy documents related to the 14th five year plan in the field of environmental protection[J]. Resource Recycling, 2022(5): 54-59.
[8]
王丹,孟政吉,贾宏杰,等. 基于配置-运行协同优化的分布式能源站选型与定容规划[J]. 电力自动化设备2019, 39(8): 152-160.
WANG Dan, MENG Zhengji, JIA Hongjie, et al. Siting and sizing planning for distributed energy station based on coordinated optimization of configuration and operation[J]. Electric Power Automation Equipment, 2019, 39(8): 152-160.
[9]
于秀艳. 楼宇天然气分布式能源站装机方案分析[J]. 华电技术2014, 6(6): 4-7, 77.
YU Xiuyan. Schemes analysis of building installation in the natural gas distributed energy station[J]. Huadian Technology, 2014, 6(6): 4-7, 77.
[10]
刘俊峰,陈剑龙,王晓生,等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术2020, 44(10): 3794-3803.
LIU Junfeng, CHEN Jianlong, WANG Xiaosheng, et al. Energy management and optimization of multi-energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10): 3794-3803.
[11]
刘明涌,杨鸿. 关于分布式能源站冷/热水系统优化运行方式的探究[J]. 科技创新与应用2016 (14): 127-127.
[12]
李先瑞. 天然气分布式能源系统设计时应注意的几个问题[J]. 区域供热2012(3): 5-12, 17.
LI Xianrui. Several important factors in design of a combined cooling, heating and power system (CCHP) driven by natural gas[J]. District Heating, 2012(3): 5-12, 17.
[13]
吕涛,鲁月红,王昌龙,等. 小型建筑分布式能源系统设计及优化[J]. 制冷与空调(四川), 2022, 36(2): 276-284.
LYU Tao, LU Yuehong, WANG Changlong, et al. Design optimization of distributed energy system for small buildings[J]. Refrigeration & Air Conditioning, 2022, 36(2): 276-284.
[14]
欧阳斌,袁志昌,陆超,等. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术2020, 41(1): 19-29.
OUYANG Bin, YUAN Zhichang, LU Chao, et al. Research on optimal operation of cold-thermal-electric integrated energy system considering source-load-storage multi-energy complementarity[J]. Power Generation Technology, 2020, 41(1): 19-29.
[15]
张尔佳,邰能灵,陈旸,等. 基于虚拟储能的综合能源系统分布式电源功率波动平抑策略[J]. 发电技术2020, 41(1): 30-40.
ZHANG Erjia, TAI Nengling, CHEN Yang, et al. A coordination strategy to smooth power fluctuation of distributed generation in integrated energy system based on virtual energy storage[J]. Power Generation Technology, 2020, 41(1): 30-40.
[16]
林群武,郑洲. 三亚某办公商业综合体冰蓄冷系统设计[J]. 科学咨询2022(9): 42-45.
[17]
孙轶恺,漆淘懿,张利军. 市场环境下含冰蓄冷空调的综合能源系统优化运行[J]. 南方电网技术2022, 16(4): 95-104.
SUN Yikai, QI Taoyi, ZHANG Lijun. Optimal operation of integrated energy system including ice-storage air-conditioning in power market[J]. Southern Power System Technology, 2022, 16(4): 95-104.
[18]
梁作放,潘华. 综合能源系统可靠经济运行现状分析与展望[J]. 内蒙古电力技术2020, 38(6): 80-84.
LIANG Zuofang, PAN Hua. Status analysis on reliable and economic operation of integrated energy system and its prospect[J]. Inner Mongolia Electric Power, 2020, 38(6): 80-84.
[19]
李天平. 暖通空调制冷系统的优化与控制技术分析[J]. 黑龙江科学2022(10): 62-64.
LI Tianping. Optimization and control technology analysis of HVAC refrigeration system[J]. Heilongjiang Science, 2022(10): 62-64.

PDF(1599 KB)

Accesses

Citation

Detail

段落导航
相关文章

/