PDF(1605 KB)
PDF(1605 KB)
PDF(1605 KB)
基于组合算法的风电机组功率曲线异常数据处理方法
Abnormal Data Processing Method of Wind Turbine Power Curve Based on Combinatorial Algorithm
风电机组在运行过程中受计划外停机、限负荷运行、极端天气等因素影响,功率曲线存在大量的横向、离散分布的异常数据,而现有数据清洗方法受算法自身条件限制,在单独应用过程中无法准确识别局部分散堆积型数据,或受限于样本数据特征,算法不能直接应用。为此,通过将基于密度的聚类算法与拉依达准则优势组合,提出一种适用于风电机组功率曲线异常数据清洗的方法。实例验证表明,该方法可高质量识别风机处于异常工况下的离散数据,泛化能力较强,在风电机组功率曲线数据清洗方面有较好应用。可作为风电机组数据分析与数据挖掘的基础,为后续高效利用风能,开展风电机组提质增效、策略优化等一系列工作提供有效数据保障。
Due to the influence of unplanned shutdown, load limiting operation, extreme weather and other factors in the operation of wind turbines, there are a large number of horizontal and discrete abnormal data in the power curve. However, the existing data cleaning methods are limited by the conditions of the algorithm itself, and the local scattered accumulation data cannot be accurately identified in a single application process, or the characteristics of sample data are limited, so the algorithm cannot be directly applied. Therefore, by combining the advantages of DBSCAN(density-based spatial clustering of applications with noise) clustering algorithm and Laida criterion, a suitable method for cleaning abnormal data of wind turbine power curve is proposed. The example shows that the method can identify the discrete data of the wind turbine under abnormal working conditions with high quality, and has strong generalization ability, and has good application in the power curve data cleaning of wind turbine. It can be used as the basis for data analysis and data mining of wind turbines, and provide effective data guarantee for subsequent efficient use of wind energy, quality and efficiency improvement of wind turbines, strategy optimization and other work.
风电机组 / 功率曲线 / 聚类分析 / 数据处理 / 拉依达准则
wind turbine / power curve / clustering analysis / data processing / laida criterion
| [1] |
沈小军,付雪姣,周冲成,等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报,2018, 33(14): 3353-3361.
|
| [2] |
杨茂,杨春霖,杨琼琼,等. 计及风向信息的风电功率异常数据识别研究[J]. 太阳能学报,2019, 40(11): 3265-3272.
|
| [3] |
梅勇,李霄,胡在春,等. 基于风电机组控制原理的风功率数据识别与清洗方法[J]. 动力工程学报,2021, 41(4): 316-322.
|
| [4] |
娄建楼,胥佳,陆恒,等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化,2016, 40(10): 116-121.
|
| [5] |
邹同华,高云鹏,伊慧娟,等. 基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J]. 电力系统自动化,2020, 44(15): 156-162.
|
| [6] |
杨茂,杨琼琼. 基于云分段最优熵算法的风电机组异常数据识别研究[J]. 中国电机工程学报,2018, 38(8): 2294-2301.
|
| [7] |
范晓泉,杜大军,费敏锐. 风电异常测量数据智能识别方法研究[J]. 仪表技术,2017(1): 10-14.
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
杨茂,江博. 风电功率弃风数据特征识别方法研究[J]. 中国电力,2017, 50(5): 95-100.
|
| [13] |
范晓泉,杜大军,费敏锐. 风电异常测量数据智能识别方法研究[J]. 仪表技术,2017(1): 10-14.
|
| [14] |
伊华伟,张付志. 融合k-距离和项目类别信息的鲁棒推荐算法[J]. 小型微型计算机系统,2017, 38(11): 2476-2481.
|
| [15] |
王兆丰,单甘霖. 一种基于k-均值的DBSCAN算法参数动态选择方法[J]. 计算机工程与应用,2017, 53(3): 80-86.
|
| [16] |
李琳,董博,郑玉巧. 大型风力机异常功率数据清洗方法[J]. 兰州理工大学学报,2022, 48(3): 65-70.
|
| [17] |
杨茂,孟玲建,李大勇,等. 基于类3σ准则的光伏功率异常数据识别[J]. 可再生能源,2018, 36(10): 1443-1448.
|
| [18] |
|
| [19] |
赵兴安. 基于数据标准化的风电数据治理体系应用研究[J]. 分布式能源,2022, 7(3): 62-71.
|
| [20] |
金鑫城,杨秀媛. 基于失真数据降噪的数据预处理方法及其在风电功率预测中的应用[J]. 发电技术,2020, 41(4): 447-451.
|
/
| 〈 |
|
〉 |