基于组合算法的风电机组功率曲线异常数据处理方法

李宣谕

分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 73-78.

PDF(1605 KB)
PDF(1605 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (3) : 73-78. DOI: 10.16513/j.2096-2185.DE.2308310
应用技术

基于组合算法的风电机组功率曲线异常数据处理方法

作者信息 +

Abnormal Data Processing Method of Wind Turbine Power Curve Based on Combinatorial Algorithm

Author information +
文章历史 +

摘要

风电机组在运行过程中受计划外停机、限负荷运行、极端天气等因素影响,功率曲线存在大量的横向、离散分布的异常数据,而现有数据清洗方法受算法自身条件限制,在单独应用过程中无法准确识别局部分散堆积型数据,或受限于样本数据特征,算法不能直接应用。为此,通过将基于密度的聚类算法与拉依达准则优势组合,提出一种适用于风电机组功率曲线异常数据清洗的方法。实例验证表明,该方法可高质量识别风机处于异常工况下的离散数据,泛化能力较强,在风电机组功率曲线数据清洗方面有较好应用。可作为风电机组数据分析与数据挖掘的基础,为后续高效利用风能,开展风电机组提质增效、策略优化等一系列工作提供有效数据保障。

Abstract

Due to the influence of unplanned shutdown, load limiting operation, extreme weather and other factors in the operation of wind turbines, there are a large number of horizontal and discrete abnormal data in the power curve. However, the existing data cleaning methods are limited by the conditions of the algorithm itself, and the local scattered accumulation data cannot be accurately identified in a single application process, or the characteristics of sample data are limited, so the algorithm cannot be directly applied. Therefore, by combining the advantages of DBSCAN(density-based spatial clustering of applications with noise) clustering algorithm and Laida criterion, a suitable method for cleaning abnormal data of wind turbine power curve is proposed. The example shows that the method can identify the discrete data of the wind turbine under abnormal working conditions with high quality, and has strong generalization ability, and has good application in the power curve data cleaning of wind turbine. It can be used as the basis for data analysis and data mining of wind turbines, and provide effective data guarantee for subsequent efficient use of wind energy, quality and efficiency improvement of wind turbines, strategy optimization and other work.

关键词

风电机组 / 功率曲线 / 聚类分析 / 数据处理 / 拉依达准则

Key words

wind turbine / power curve / clustering analysis / data processing / laida criterion

引用本文

导出引用
李宣谕. 基于组合算法的风电机组功率曲线异常数据处理方法[J]. 分布式能源. 2023, 8(3): 73-78 https://doi.org/10.16513/j.2096-2185.DE.2308310
Xuanyu LI. Abnormal Data Processing Method of Wind Turbine Power Curve Based on Combinatorial Algorithm[J]. Distributed Energy Resources. 2023, 8(3): 73-78 https://doi.org/10.16513/j.2096-2185.DE.2308310
中图分类号: TK01; TM614   

参考文献

[1]
沈小军,付雪姣,周冲成,等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报2018, 33(14): 3353-3361.
SHEN Xiaojun, FU Xuejiao, ZHOU Chongcheng, et al. Characteristics of outliers in wind speed-power operation data of wind turbine and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361.
[2]
杨茂,杨春霖,杨琼琼,等. 计及风向信息的风电功率异常数据识别研究[J]. 太阳能学报2019, 40(11): 3265-3272.
YANG Mao, YANG Chunlin, YANG Qiongqiong, et al. Study on data recognition of wind power abnormality considering wind direction information[J]. Acta Energiae Solaris Sinica, 2019, 40(11): 3265-3272.
[3]
梅勇,李霄,胡在春,等. 基于风电机组控制原理的风功率数据识别与清洗方法[J]. 动力工程学报2021, 41(4): 316-322.
MEI Yong, LI Xiao, HU Zaichun, et al. Identification and cleaning of wind power data methods based on control principle of wind turbine generator system[J]. Chinese Journal of Power Engineering, 2021, 41(4): 316-322.
[4]
娄建楼,胥佳,陆恒,等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化2016, 40(10): 116-121.
LOU Jianlou, XU Jia, LU Heng, et al. Wind turbine data clean in algorithm based on power curve[J]. Automation of Electric Power Systems, 2016, 40(10): 116-121.
[5]
邹同华,高云鹏,伊慧娟,等. 基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J]. 电力系统自动化2020, 44(15): 156-162.
ZOU Tonghua, GAO Yunpeng, YI Huijuan, et al. Processing of wind power abnormal data based on thompson tau-quartile and multi-point interpolation[J]. Automation of Electric Power Systems, 2020, 44(15): 156-162.
[6]
杨茂,杨琼琼. 基于云分段最优熵算法的风电机组异常数据识别研究[J]. 中国电机工程学报2018, 38(8): 2294-2301.
YANG Mao, YANG Qiongqiong. The identification research of the wind turbine abnormal data based on the cloud segment optimal entropy algorithm[J]. Proceedings of the CSEE, 2018, 38(8): 2294-2301.
[7]
范晓泉,杜大军,费敏锐. 风电异常测量数据智能识别方法研究[J]. 仪表技术2017(1): 10-14.
FAN Xiaoquan, DU Dajun, FEI Minrui. Research on the intelligent identification method for abnormal measurement data of the wind power[J]. Instrumentation Technology, 2017(1): 10-14.
[8]
KUSIAK A, ZHENG H, SONG Z. On-line monitoring of power curves[J]. Renewable Energy, 2009, 34(6): 1487-1493.
[9]
WANG Z, WANG L, HUANG C. A fast abnormal data cleaning algorithm for performance evaluation of wind turbine[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-12.
[10]
LONG H, SANG L, WU Z, et al. Image-based abnormal data detection and cleaning algorithm via wind power curve[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 938-946.
[11]
ZHAO Y, YE L, WANG W, et al. Data-driven correction approach to refine power curve of wind farm under wind curtailment[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 95-105.
[12]
杨茂,江博. 风电功率弃风数据特征识别方法研究[J]. 中国电力2017, 50(5): 95-100.
YANG Mao, JIANG Bo. Recognition method of wind curtailment data characteristics[J]. Electric Power, 2017, 50(5): 95-100.
[13]
范晓泉,杜大军,费敏锐. 风电异常测量数据智能识别方法研究[J]. 仪表技术2017(1): 10-14.
FAN Xiaoquan, DU Dajun, FEI Minrui. Research on the intelligent identification method for abnormal measurement data of the wind power[J]. Instrumentation Technology, 2017(1): 10-14.
[14]
伊华伟,张付志. 融合k-距离和项目类别信息的鲁棒推荐算法[J]. 小型微型计算机系统2017, 38(11): 2476-2481.
YI Huawei, ZHANG Fuzhi. Robust recommendation method fusing k-distance and item category information[J]. Journal of Chinese Computer Systems, 2017, 38(11): 2476-2481.
[15]
王兆丰,单甘霖. 一种基于k-均值的DBSCAN算法参数动态选择方法[J]. 计算机工程与应用2017, 53(3): 80-86.
WANG Zhaofeng, SHAN Ganlin. k-means based method for dynamically selecting DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2017, 53(3): 80-86.
[16]
李琳,董博,郑玉巧. 大型风力机异常功率数据清洗方法[J]. 兰州理工大学学报2022, 48(3): 65-70.
LI Lin, DONG Bo, ZHENG Yuqiao. Abnormal power data cleaning method of large wind turbine[J]. Journal of Lanzhou University of Technology, 2022, 48(3): 65-70.
[17]
杨茂,孟玲建,李大勇,等. 基于类3σ准则的光伏功率异常数据识别[J]. 可再生能源2018, 36(10): 1443-1448.
YANG Mao, MENG Lingjian, LI Dayong, et al. Identification of photovoltaic power anomaly data based on Class 3σ criterion[J]. Renewable Energy, 2018, 36(10): 1443-1448.
[18]
WANG Y, INFIELD D G, STEPHEN B, et al. Copula-based model for wind turbine power curve outlier rejection[J]. Wind Energy, 2014, 17(11): 1677-1688.
[19]
赵兴安. 基于数据标准化的风电数据治理体系应用研究[J]. 分布式能源2022, 7(3): 62-71.
ZHAO Xing'an. Application research of wind power data governance system based on data standardization[J]. Distributed Energy, 2022, 7(3): 62-71.
[20]
金鑫城,杨秀媛. 基于失真数据降噪的数据预处理方法及其在风电功率预测中的应用[J]. 发电技术2020, 41(4): 447-451.
JIN Xincheng, YANG Xiuyuan. Data pre-processing method based on distorted data noise reduction and its application in wind power prediction[J]. Power Generation Technology, 2020, 41(4): 447-451.

基金

大唐东北电力试验研究院科技项目(DBYKJ-2023-0011)

PDF(1605 KB)

Accesses

Citation

Detail

段落导航
相关文章

/