交直流混合微电网接口变换器改进型双向下垂控制策略

嘉言,施凯,徐培凤,查正祺,陈煜洋

分布式能源 ›› 2023, Vol. 8 ›› Issue (4) : 1-10.

PDF(2382 KB)
PDF(2382 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (4) : 1-10. DOI: 10.16513/j.2096-2185.DE.2308401
学术研究

交直流混合微电网接口变换器改进型双向下垂控制策略

作者信息 +

Improved Bidirectional Droop Control of Hybrid AC-DC Microgrid Interface Converter

Author information +
文章历史 +

摘要

针对交直流混合微电网双向接口变换器(bidirectional interface converter, BIC)采用双向下垂控制存在惯性小、阻尼低等问题,提出一种适用于BIC的改进型双向下垂控制策略。通过改进有功环,引入惯性环节和限幅系数不仅能够给系统提供惯性,减小负荷波动对交流母线频率和直流母线电压的影响,改善交、直流子网间功率传输的动态响应,还能提高交直流混合微电网的抗干扰特性和动态响应特性。通过在电流环引入非线性干扰观测器,可以抑制负荷功率的瞬态波动,抑制外部功率扰动下母线电压的波动幅度。分析了关键参数对系统稳定性的影响,采用PSCAD/EMTDC仿真验证了所提控制策略的正确性和有效性,并针对不同控制策略下负载变化时交流频率和直流电压的动态响应以及功率传输的动态响应进行了对比分析,得出了所提控制策略的优越性。

Abstract

Focusing on low inertia and low damping problems in the droop control for bidirectional interface converters (BICs) in hybrid AC-DC microgrid, an improved bidirectional droop control strategy applied to BICs is proposed. By improving the active power loop and introducing an inertia link and a limiting coefficient, the system can not only provide inertia, reduce the impact of load fluctuations on AC bus frequency and DC bus voltage, improve the dynamic response of power transmission between AC and DC subnets, but also improve the anti-interference and dynamic response characteristics of hybrid AC-DC hybrid microgrid. By introducing a nonlinear disturbance observer into the current loop, transient fluctuations in load power can be suppressed, and the amplitude of bus voltage fluctuations under external power disturbances can be suppressed. The article provides a detailed analysis of the impact of key parameters on system stability, and verifies the correctness and effectiveness of the proposed control strategy by PSCAD/EMTDC simulation. It also compares and analyzes the dynamic response of AC frequency and DC voltage as well as power transmission under different control strategies when load changes, highlighting the superiority of the proposed control strategy.

关键词

交直流混合微电网 / 双向接口变换器 / 非线性干扰观测器 / 微电网稳定性 / 改进双向下垂控制

Key words

hybrid AC-DC microgrid / bidirectional interface converter / nonlinear disturbance observer / microgrid stability / improved bidirectional droop control

引用本文

导出引用
嘉言, 施凯, 徐培凤, . 交直流混合微电网接口变换器改进型双向下垂控制策略[J]. 分布式能源. 2023, 8(4): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2308401
Yan JIA, Kai SHI, Peifeng XU, et al. Improved Bidirectional Droop Control of Hybrid AC-DC Microgrid Interface Converter[J]. Distributed Energy Resources. 2023, 8(4): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2308401
中图分类号: TM727   

参考文献

[1]
苏萌. 分布式发电技术在电力系统中的应用综述[J]. 价值工程2019, 38(27): 227-228.
SU Meng. Summary of application of distributed power generation technology in power system[J]. Value Engineering, 2019, 38(27): 227-228.
[2]
贺红军. 新能源发电和分布式发电对电力系统的影响分析[J]. 光源与照明2022(8): 159-161.
HE Hongjun. Influence analysis of new energy generation and distributed generation on power system[J]. Lamps & Lighting, 2022(8): 159-161.
[3]
马红明,刘林青,谢海鹏,等. 计及综合需求响应的电-热综合能源系统分布式光伏最大接入容量评估[J]. 智慧电力2021, 49(8): 23-30.
MA Hongming, LIU Linqing, XIE Haipeng, et al. Maximum access capacity assessment of distributed photovoltaic in integrated electric-thermal energy system considering integrated demand response[J]. Smart Power, 2021, 49(8): 23-30.
[4]
王成山. 微电网分析与仿真理论[M]. 北京:科学出版社,2013.
[5]
岳应娟,凤林,蔡艳平,等. 交直流混合微电网运行控制技术[J]. 科学技术与工程2022, 22(28): 12242-12252.
YUE Yingjuan, FENG Lin, CAI Yanping, et al. AC/DC hybrid microgrid operation control technology[J]. Science Technology and Engineering, 2022, 22(28): 12242-12252.
[6]
胡丽萍,孙英云,王春斐,等. 基于广义下垂控制的电力电子变压器运行策略优化组合[J]. 电力系统自动化2020, 44(3): 40-48.
HU Liping, SUN Yingyun, WANG Chunfei, et al. Optimal combination of operation strategy for power electronic transformer based on generalized droop control[J]. Automation of Electric Power Systems, 2020, 44(3): 40-48.
[7]
李松,李建伟,董云飞,等. 多子微电网型交直流混合配电系统灵活功率控制与电压抑制策略[J]. 电力自动化设备2021, 41(5): 99-106.
LI Song, LI Jianwei, DONG Yunfei, et al. Flexible power control and voltage suppression strategy for hybrid AC/DC distribution system with multi-microgrids[J]. Electric Power Automation Equipment, 2021, 41(5): 99-106.
[8]
田浩,黄文焘,余墨多,等. 交直流混合独立微网互联变换器自适应双向下垂控制策略[J]. 中国电机工程学报2022, 42(19): 7063-7074.
TIAN Hao, HUANG Wentao, YU Moduo, et al. Adaptive bidirectional droop control strategy for the interlinking converter in the islanding hybrid AC/DC microgrids[J]. Proceedings of the CSEE, 2022, 42(19): 7063-7074.
[9]
朱介北,李峰,俞露杰,等. 基于固态变压器的互联交直流微电网功率互济自主控制[J]. 电网技术2023, 47(1): 284-295.
ZHU Jiebei, LI Feng, YU Lujie, et al. Autonomous power mutual support control for AC/DC microgrid interconnected by solid state transformer[J]. Power System Technology, 2023, 47(1): 284-295.
[10]
PEYGHAMI S, MOKHTARI H, BLAABJERG F. Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters[J]. IEEE Transaction on Smart Grid, 2018, 9(6): 6480-6488.
[11]
NAJAFZADEH M, AHMADIAHANGAR R, HUSEV O, et al. Recent contributions, future prospect and limitations of interlinking converter control in hybrid AC/DC microgrids[J]. IEEE Access, 2021, 7960-7984.
[12]
WANG Chengshan, LI Xialin, LI Guo, et al. A nonlinear disturbance observer based DC bus voltage control for a hybrid AC/DC microgrid[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6162-6177.
[13]
刘子文,苗世洪,范志华,等. 孤立交直流混合微电网双向AC/DC换流器功率控制与电压波动抑制策略[J]. 中国电机工程学报2019, 39(21): 6225-6238.
LIU Ziwen, MIAO Shihong, FAN Zhihua, et al. Power control and voltage fluctuation suppression strategy of bidirectional AC/DC converter in isolated AC/DC hybrid microgrid[J]. Proceedings of the CSEE, 2019, 39(21): 6225-6238.
[14]
杨继鑫,王久和,王勉,等. 基于无源控制的双向并网变换器虚拟惯性控制策略[J]. 高电压技术2021, 47(4): 1295-1303.
YANG Jixin, WANG Jiuhe, WANG Mian, et al. Virtual inertia control strategy of bidirectional grid-connected converter based on passivity-based control[J]. High Voltage Engineering, 2021, 47(4): 1295-1303.
[15]
郭亦宗,郭创新. 基于虚拟同步发电机的微电网并离网安全控制策略[J]. 发电技术2020, 41(6): 650-658.
GUO Yizong, GUO Chuangxin. Security control strategy of micro-grid between grid-connected and off-grid based on virtual synchronous generator[J]. Power Generation Technology, 2020, 41(6): 650-658.
[16]
ZHU J, HU J, HUNG W, et al. Synthetic inertia control strategy for doubly fed induction generator wind turbine generators using lithium-ion supercapacitors[J]. IEEE Trans-actions on Energy Conversion, 2018, 33(2): 773-783.
[17]
ZHU J, GUERRERO J, HUNG W, et al. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems[J]. IET Renewable Power Generation, 2014, 8(7): 740-748.
[18]
郑新昊,祝龙记. 光伏直流微电网超级电容储能控制策略研究[J]. 可再生能源2020, 38(4): 497-501.
ZHENG Xinhao, ZHU Longji. Research on energy storage control strategy for supercapacitors in photovoltaic DC microgrids[J]. Renewable Energy Resources, 2020, 38(4): 497-501.
[19]
郑天文,陈来军,刘炜,等. 考虑源端动态特性的光伏虚拟同步机多模式运行控制[J]. 中国电机工程学报2017, 37(2): 454-464.
ZHENG Tianwen, CHENG Laijun, LIU Wei, et al. Multi-mode operation control for photovoltaic virtual synchronous generator considering the dynamic characteristics of primary source[J]. Proceedings of the CSEE, 2017, 37(2): 454-464.
[20]
LOIX T. Participation of inverter-connected distributed energy resources in grid voltage control[D]. Leuven: Katholieke Universiteit Leuven, 2011
[21]
ZHANG Y, SUN Q, ZHOU J, et al. Coordinated control of networked AC/DC microgrids with adaptive virtual inertia and governor-gain for stability enhancement[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 95-110.
[22]
QI G, CHEN A, CHEN J. Improved control strategy of interlinking converters with synchronous generator characteristic in islanded hybrid AC/DC microgrid[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(2): 149-158.

基金

国家自然科学基金项目(52177045)
江苏高校优势学科建设工程(三期)项目(PAPD-2018-87)

PDF(2382 KB)

Accesses

Citation

Detail

段落导航
相关文章

/