电场对火焰特性的影响

郭宏展,姜根柱

分布式能源 ›› 2023, Vol. 8 ›› Issue (4) : 73-84.

PDF(2041 KB)
PDF(2041 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (4) : 73-84. DOI: 10.16513/j.2096-2185.DE.2308409
应用技术

电场对火焰特性的影响

作者信息 +

Influence of Electric Field on Flame Characteristics

Author information +
文章历史 +

摘要

电场辅助燃烧是利用外部电场,通过将带电物质分离到单极区域来产生离子驱动的风,从而驱动周围的中性物质,这通常被认为是一种强大的火焰控制机制,是提升燃料燃烧效率的一个重要手段。对不同形式、不同施加方式的电场下的火焰特性、碳烟颗粒的排放和仿真现状进行广泛研究,总结不同火焰参数测量方式导致的不同程度的误差,及完善的数值模拟对实验数据的预测作用。结果表明:当前的数值模拟大多是2维的,需要开发完善准确的3维模型来模拟和预测火焰在电场下的特性;也需要在高压力和温度条件下对不同燃料在电场下的测量结果,以便在电场下为火焰开发出更广泛、更精确的动力学和化学模型。

Abstract

Electric field-assisted combustion is the utilization of an external electric field to segregate charged particles into monopolar regions, generating ion-driven winds that propel surrounding neutral substances. This mechanism is often regarded as a potent flame control strategy and a crucial means to enhance fuel combustion efficiency. The present study extensively investigates flame characteristics, carbon particle emissions, and simulation scenarios under various forms and application methods of electric fields. The research consolidates the varying degrees of errors resulting from different methods of measuring flame parameters, as well as the role of refined numerical simulations in predicting experimental data. The findings underscore the prevalence of two-dimensional simulations in the current landscape, necessitating the development of accurate three-dimensional models to simulate and predict flame behavior under electric fields. Furthermore, the research highlights the dearth of measurement outcomes for different fuels under electric fields at elevated pressure and temperature conditions, aiming to facilitate the broader and more precise development of kinetic and chemical models for flames in electric fields.

关键词

电场辅助燃烧 / 离子风效应 / 数值模型 / 电场分布影响 / 电场类型影响

Key words

electric field assisted combustion / ionic wind effect / numerical model / influence of electric field distribution / influence of electric field type

引用本文

导出引用
郭宏展, 姜根柱. 电场对火焰特性的影响[J]. 分布式能源. 2023, 8(4): 73-84 https://doi.org/10.16513/j.2096-2185.DE.2308409
Hongzhan GUO, Genzhu JIANG. Influence of Electric Field on Flame Characteristics[J]. Distributed Energy Resources. 2023, 8(4): 73-84 https://doi.org/10.16513/j.2096-2185.DE.2308409
中图分类号: TK16   

参考文献

[1]
HONG Y C, UHM H S. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels[J]. Physics of Plasmas, 2006, 13(11): 113-501.
[2]
HEMAWAN K W, ROMEL C L, ZUO S, et al. Microwave plasma-assisted premixed flame combustion[J]. Applied Physics Letters, 2006, 89(14): 141-501.
[3]
KONG C D, LI Z S, ALDÉN M, et al. Stabilization of a turbulent premixed flame by a plasma filament[J]. Combustion and Flame, 2019, 208: 79-85.
[4]
杜增晖,高忠权,何子奇,等. 高初始压力下交流电场对甲烷/空气预混球形火焰燃烧特性的影响[J]. 西安交通大学学报2020, 54(3): 80-87, 96.
DU Zenghui, GAO Zhongquan, HE Ziqi, et al. Effect of AC electric field on combustion characteristics of methane/air premixed spherical flame under high initial pressure[J]. Journal of Xi'an Jiaotong University, 2020, 54(3): 80-87, 96.
[5]
HAYHURST A N, GOODINGS J M, TAYLOR S G. The effects of applying electric fields on the mass spectrometric sampling of positive and negative ions from a flame at atmospheric pressure[J]. Combustion and Flame, 2014, 161(12): 3249-3262.
[6]
KUHL J, JOVICIC G, ZIGAN L, et al. Transient electric field response of laminar premixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3303-3310.
[7]
OMBRELLO T, WON S H, JU Y, et al. Flame propagation enhancement by plasma excitation of oxygen(Ⅰ): Effects of O3[J]. Combustion and Flame, 2010, 157(10): 1906-1915.
[8]
李振山,陈虎,李维成,等. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术2022, 43(4): 544-561.
LI Zhenshan, CHEN Hu, LI Weicheng, et al. Research status and prospect of chemical looping combustion pilot systems[J]. Power Generation Technology, 2022, 43(4): 544-561.
[9]
CALCOTE H F. Electrical properties of flames: Burner flames in transverse electric fields[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 245-253.
[10]
崔雨辰,段浩,吴筱敏,等. 交流和直流电场对天然气贫燃火焰的影响[J]. 化工学报2015, 66(6): 2235-2241.
CUI Yuchen, DUAN Hao, WU Xiaomin, et al. The influence of AC and DC electric fields on natural gas lean-burn flames[J]. CIESC Journal, 2015, 66(6): 2235-2241.
[11]
房建峰,赵海军,周辉,等. 电场对甲烷-空气混合气燃烧特性的影响[J]. 化工学报2018, 69(10): 4409-4417.
FANG Jianfeng, ZHAO Haijun, ZHOU Hui, et al. The influence of electric field on the combustion characteristics of methane-air mixture[J]. CIESC Journal, 2018, 69(10): 4409-4417.
[12]
XU K G. Plasma sheath behavior and ionic wind effect in electric field modified flames[J]. Combustion and Flame, 2014, 161(6): 1678-1686.
[13]
PARK D G, CHUNG S H, CHA M S. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields[J]. Combustion and Flame, 2016, 168: 138-146.
[14]
QIN H Z, LIANG S F, CHEN L Y, et al. Recent advances in vanadium-based nanomaterials and their composites for supercapacitors[J]. Sustainable Energy Fuels, 2020, 4(10): 4902-4933.
[15]
CHIEN Y C, ESCOFET-MARTIN D, DUNN-RANKIN D. Ion current and carbon monoxide release from an impinging methane/air coflow flame in an electric field[J]. Combustion and Flame, 2019, 204: 250-259.
[16]
VEJBY-CHRISTENSEN L, ANDERSEN L H, HEBER O, et al. Complete branching ratios for the dissociative recombination of H2O,H3O,and CH3+[J]. The Astrophysical Journal, 1997, 483(1): 531-540.
[17]
YAMASHITA K, KARNANI S, DUNN-RANKIN D. Numerical prediction of ion current from a small methane jet flame[J]. Combustion and Flame, 2009, 156(6): 1227-1233.
[18]
KIM D, RIZZI F, CHENG K W, et al. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon[J]. Combustion and Flame, 2015, 162(7): 2904-2915.
[19]
ZELDOVICH Y B, BARENBLATT G I, LIBROVICH V B, et al. The mathematical theory of combustion and explosions[M]. Consultants Bureau, 1985, 67: 185-186.
[20]
DOLD J W, THATCHER R W, OMON-ARANCIBIA A, et al. From one-step to chain-branching premixed flame asymptotics[J]. Proceedings of the Combustion Institute, 2002, 29(2): 1519-1526.
[21]
DOLD J W. Premixed flames modelled with thermally sensitive intermediate branching kinetics[J]. Combustion Theory and Modelling, 2007, 11(6): 909-948.
[22]
SHARPE G J. Thermal-diffusive instability of premixed flames for a simple chain-branching chemistry model with finite activation energy[J]. SIAM Journal on Applied Mathematics, 2009, 70(3): 866-884.
[23]
SÁNCHEZ-SANZ M, MURPHY D C, FERNANDEZ-PELLO C. Effect of an external electric field on the propagation velocity of premixed flames[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3463-3470.
[24]
CALCOTE H F, KURZIUS S C, MILLER W J. Negative and secondary ion formation in low-pressure flames[J]. Tenth Symposium (International) on Combustion, 1965, 10(1): 605-619.
[25]
PAPAC M J, DUNN-RANKIN D. Modelling electric field driven convection in small combustion plasmas and surrounding gases[J]. Combustion Theory and Modelling, 2007, 12(1): 23-44.
[26]
BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 2286-2297.
[27]
HU J, RIVIN B, SHER E. The effect of an electric field on the shape of co-flowing and candle-type methane-air flames[J]. Experimental Thermal and Fluid Science, 2000, 21(1-3): 124-133.
[28]
PAPAC M J, DUNN-RANKIN D. Modelling electric field driven convection in small combustion plasmas and surrounding gases[J]. Combustion Theory and Modelling, 2007, 12(1): 23-44.
[29]
BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 2286-2297.
[30]
SPEELMAN N, DEGOEY L P H, VANOIJEN J A. Development of a numerical model for the electric current in burner-stabilised methane-air flames[J]. Combustion Theory and Modelling, 2015, 19(2): 159-187.
[31]
BELHI M, LEE B J, BISETTI F, et al. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames[J]. Journal of Physics D: Applied Physics, 2017, 50(49): 494005.
[32]
BELHI M, DOMINGO P, VERVISCH P. Modelling of the effect of DC and AC electric fields on the stability of a lifted diffusion methane/air flame[J]. Combustion Theory and Modelling, 2013, 17(4): 749-787.
[33]
DI RENZO M, DE PALMA P, DETULLIO M D, et al. An efficient flamelet progress-variable method for modeling non-premixed flames in weak electric fields[J]. Computers & Fluids, 2017, 157: 14-27.
[34]
BELHI M, LEE B J, CHA M S, et al. Three-dimensional simulation of ionic wind in a laminar premixed Bunsen flame subjected to a transverse DC electric field[J]. Combustion and Flame, 2019, 202: 90-106.
[35]
PARK D G, CHUNG S H, CHA M S. Visualization of ionic wind in laminar jet flames[J]. Combustion and Flame, 2017, 184: 246-248.
[36]
HAN J, BELHI M, BISETTI F, et al. Numerical modelling of ion transport in flames[J]. Combustion Theory and Modelling, 2015, 19(6): 744-772.
[37]
REN Y, CUI W, PITSCH H, et al. Experimental and numerical studies on electric field distribution of a premixed stagnation flame under DC power supply[J]. Combustion and Flame, 2020, 215: 103-112.
[38]
IMAMURA O, KUBO Y, OSAKA J, et al. A study on single fuel droplets combustion in vertical direct current electric fields[J]. Proceedings of the Combustion Institute, 2005, 30(2): 1949-1956.
[39]
UEDA T, IMAMURA O, OKAI K, et al. Combustion behavior of single droplets for sooting and non-sooting fuels in direct current electric fields under microgravity[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2595-2601.
[40]
OKAJIMA S. Experimental studies on combustion of fuel droplets in flowing air under zero- and high-gravity conditions[J]. Symposium (International) on Combustion, 1982, 19(1): 1021-1027.
[41]
IMAMURA O, CHEN B, NISHIDA S, et al. Combustion of ethanol fuel droplet in vertical direct current electric field[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2005-2011.
[42]
CHA M S, LEE S M, KIM K T, et al. Soot suppression by nonthermal plasma in coflow jet diffusion flames using a dielectric barrier discharge[J]. Combustion and Flame, 2005, 141(4): 438-447.
[43]
LI Y M, WANG J H, XIA H, et al. Effect of DC electric field on laminar premixed spherical propagation flame at elevated pressures up to 0.5 MPa[J]. Combustion Science and Technology, 2018, 190(11): 1900-1922.
[44]
MENG X W, WU X M, KANG C, et al. Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of premixed CH4/O2/N2 flames[J]. Energy & Fuels, 2012, 26(11): 6612-6620.
[45]
RYU S K, KIM Y K, KIM M K, et al. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields[J]. Combustion and Flame, 2010, 157(1): 25-32.
[46]
KIM M K, RYU S K, WON S H, et al. Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow[J]. Combustion and Flame, 2010, 157(1): 17-24.
[47]
BAO Q L, PAN C X. Electric field induced growth of well aligned carbon nanotubes from ethanol flames[J]. Nanotechnology, 2006, 17(4): 1016-1021.
[48]
MASUNAGA K, ITO H, FUJITA O. Investigation of applying DC electric field effect on carbon nanotube synthesis[J]. Asia-Pacific Journal of Chemical Engineering, 2013, 8(2): 246-253.
[49]
WON S H, CHA M S, PARK C S, et al. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets[J]. Proceedings of the Combustion Institute, 2007, 31(1): 963-970.
[50]
GUO L, ZHAI M, ZHANG Y C, et al. Electrical characteristics of laminar propane flame during head-on quenching[J]. Science China Technological Sciences, 2020, 63(68): 1497-1508.
[51]
PRAGER J, RIEDEL U, WARNATZ J. Modeling ion chemistry and charged species diffusion in lean methane-oxygen flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1129-1137.
[52]
GAN Y H, WANG M, LUO Y L, et al. Effects of direct-current electric fields on flame shape and combustion characteristics of ethanol in small scale[J]. Advances in Mechanical Engineering, 2016, 8(1): 1-14.
[53]
SIMENI M, TANG Y, HUNG Y-C, et al. Electric field in Ns pulse and AC electric discharges in a hydrogen diffusion flame[J]. Combustion and Flame, 2018, 197: 254-264.
[54]
ATA A, COWART J S, VRANOS A, et al. Effects of direct current electric field on the blowoff characteristics of bluff-body stabilized conical premixed flames[J]. Combustion Science and Technology, 2005, 177(7): 1291-1304.
[55]
ZHEN H S, WANG Z W, LIU X Y, et al. An experimental study on the effect of DC electric field on impinging flame[J]. Fuel, 2020, 274: 117846.
[56]
LUO Y L, GAN Y H, XU J L, et al. Effects of electric field intensity and frequency of AC electric field on the small-scale ethanol diffusion flame behaviors[J]. Applied Thermal Engineering, 2017, 115: 1330-1336.
[57]
ZHANG Y, WU Y X, YANG H R, et al. Effect of high-frequency alternating electric fields on the behavior and nitric oxide emission of laminar non-premixed flames[J]. Fuel, 2013, 109: 350-355.
[58]
VEGA E V, SHIN S S, LEE K Y. NO emission of oxygen-enriched CH4/O2/N2 premixed flames under electric field[J]. Fuel, 2007, 86(4): 512-519.
[59]
SAKHRIEH A, LINS G, DINKELACKER F, et al. The influence of pressure on the control of premixed turbulent flames using an electric field[J]. Combustion and Flame, 2005, 143(3): 313-322.
[60]
PARK S H, LIM S J, CHA M S, et al. Effect of AC electric field on flame spread in electrical wire: Variation in polyethylene insulation thickness and di-electrophoresis phenomenon[J]. Combustion and Flame, 2019, 202: 107-118.
[61]
REN Y H, LI S Q, CUI W, et al. Low-frequency AC electric field induced thermoacoustic oscillation of a premixed stagnation flame[J]. Combustion and Flame, 2017, 176: 479-488.
[62]
KIM M K, CHUNG S H, FUJITA O. Effect of AC electric fields on flame spread over electrical wire[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1145-1151.
[63]
PARK D G, CHUNG S H, CHA M S. Dynamic responses of counterflow nonpremixed flames to AC electric field[J]. Combustion and Flame, 2018, 198: 240-248.
[64]
LIM S J, PARK S H, PARK J, et al. Flame spread over inclined electrical wires with AC electric fields[J]. Combustion and Flame, 2017, 185: 82-92.
[65]
KIM M K, CHUNG S H, KIM H H. Effect of AC electric fields on the stabilization of premixed bunsen flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1137-1144.
[66]
KIM M K, CHUNG S H, KIM H H. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect[J]. Combustion and Flame, 2012, 159(3): 1151-1159.
[67]
TRETYAKOV P K, TUPIKIN A V, ZUDOV V N. Effect of laser radiation and electric field on combustion of hydrocarbon-air mixtures, combustion[J]. Explosion, and Shock Waves, 2009, 45: 413-420.
[68]
DUAN H, WU X M, SUN T Q, et al. Effects of electric field intensity and distribution on flame propagation speed of CH4/O2/N2 flames[J]. Fuel, 2015, 158: 807-815.
[69]
KUHL J, JOVICIC G, ZIGAN L, et al. Influence of electric fields on premixed laminar flames: Visualization of perturbations and potential for suppression of thermoacoustic oscillations[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3521-3528.
[70]
KUHL J, SEEGER T, ZIGAN L, et al. On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields[J]. Combustion and Flame, 2017, 176: 391-399.

PDF(2041 KB)

Accesses

Citation

Detail

段落导航
相关文章

/