PDF(2340 KB)
PDF(2340 KB)
PDF(2340 KB)
基于自抗扰技术的直驱风机高电压穿越控制策略
High Voltage Ride Through Control Strategy of PMSGs Based on Active Disturbance Rejection Control Technology
直驱式永磁同步风力发电机组(permanent magnet synchronous wind turbine generator,PMSG)全功率变流器是具有非线性、强耦合的复杂系统,易受到电网电压波动及非线性负载影响。为提高变流器直流母线电压的稳定性,提出一种基于改进线性自抗扰控制(linear active disturbance rejection control,LADRC)技术的PMSG高电压穿越控制策略。在传统LADRC基础上,将总扰动的微分扩张为一个新的状态变量,对总扰动的变化趋势进行提前观测,提高线性扩张状态观测器(linear extended state observer,LESO)的动态扰动观测能力。直流侧采用卸荷电阻优化方案,网侧变流器运行于无功补偿模式,为电网电压恢复稳定提供动态无功支撑。多种工况下的仿真结果表明,该控制策略缩小直流母线电压波动范围的同时减少了调节时间,能有效提升直流母线电压抗干扰能力,确保PMSG在高电压故障期间不脱网连续运行,同时提供一定的感性无功帮助电网电压恢复稳定。
The full power converter of direct-driven permanent magnet synchronous wind turbine generator (PMSG) is a complex system with nonlinear and strong coupling, which is easily affected by voltage fluctuation of power grid and nonlinear load. In order to improve the converter DC bus voltage, a high voltage ride through control strategy of PMSG based on improved linear active disturbance rejection control (LADRC) technology is proposed in this paper. Based on the traditional LADRC, the differential of the total disturbance is expanded into a new state variable, and the change trend of the total disturbance is observed in advance to improve the dynamic disturbance observation capability of the linear extended state observer (LESO). The unloading resistance optimization scheme is adopted on the DC side, and the converter on the grid side runs in reactive power compensation mode to provide dynamic reactive power support for voltage stabilization. The simulation results under various operating conditions indicate that this control strategy reduces the fluctuation range of DC bus voltage while reducing the adjustment time, effectively improving the anti-interference capability of DC bus voltage, ensuring that the PMSG does not disconnect from the grid for continuous operation during high voltage faults, and providing a certain amount of inductive reactive power to help restore stability to the grid voltage.
直驱式永磁同步风力发电机组(PMSG) / 全功率变流器 / 线性自抗扰控制(LADRC) / 高电压穿越
direct-driven permanent magnet synchronous wind turbine generator (PMSG) / full power converter / linear active disturbance rejection control (LADRC) / high voltage ride through
| [1] |
刘侃,贾祺,翟文超,等. 面向次同步振荡的直驱风电机组阻抗频率响应特性辨识[J]. 智慧电力,2021, 49(9):39-46.
|
| [2] |
李京京,王蕴敏,陈阳. 永磁直驱风机风电场并网电压稳定性及其无功补偿分析[J]. 内蒙古电力技术,2022, 40(1):2-9.
|
| [3] |
张光儒,拜润卿,朱宏毅,等. 直流母线过压对风电机组高电压穿越影响[J]. 中国电力,2020, 53(11):106-110;106-110,125.
|
| [4] |
鲍建,杨沛豪,何昭辉,等. 新能源混合储能提高高电压穿越能力研究[J]. 热力发电,2021, 50(8):79-86.
|
| [5] |
张旭,王怡,刘伯文,等. 基于转子无功电流动态调整的DFIG全过程高电压穿越策略[J]. 电力系统自动化,2022, 46(22):142-150.
|
| [6] |
王辉,王艺霏,王姗姗,等. 基于动态电压指令值变化的双馈异步风力发电系统高低电压穿越控制策略[J]. 高电压技术,2022, 48(9):3680-3688.
|
| [7] |
薛易,陈元,张帅. 超级电容储能直驱永磁风电机的高电压穿越控制策略[J]. 黑龙江科技大学学报,2021, 31(3):338-343.
|
| [8] |
蒋子傲,崔双喜. 基于混合储能系统的高电压穿越控制策略[J]. 电测与仪表,2022, 59(3):125-130.
|
| [9] |
叶盛峰,王维庆,王海云. 基于STATCOM风电机组高电压穿越技术[J]. 高压电器,2017, 53(5):35-40.
|
| [10] |
张公生,王维庆,王海云,等. 考虑变直流母线电压参考值的直驱风电机组高电压穿越控制策略[J]. 可再生能源,2022, 40(6):816-821.
|
| [11] |
郭岳霖,阿布力孜买买提热依木,刘谨言,等. 定子侧变阻值Crowbar的DFIG高电压穿越技术[J]. 智慧电力,2022, 50(11):90-96.
|
| [12] |
李朋宇,何山,王松,等. 直驱风机HVRT两种直流侧卸荷方法对比仿真研究[J]. 电测与仪表,2018, 55(22):7-12.
|
| [13] |
杨林,曾江,马文杰,等. 基于改进二阶线性自抗扰技术的微网逆变器电压控制[J]. 电力系统自动化,2019, 43(4):146-153.
|
| [14] |
韩永强,徐明忻,孙碣,等. 改进LADRC的储能逆变器直流母线电压控制[J]. 电力系统及其自动化学报,2021, 33(1):13-21.
|
| [15] |
魏娟,黎灿兵,黄晟,等. 大规模风电场高电压穿越控制方法研究综述[J/OL]. 上海交通大学学报:1-27[2023-04-23].
|
| [16] |
王德胜,颜湘武,贾焦心,等. 永磁直驱风机基于虚拟同步技术的高、低电压连续故障穿越策略[J]. 中国电机工程学报,2022, 42(6):2164-2175.
|
| [17] |
|
| [18] |
邹欣,李晖,赵晟凯,等. 直驱风电场高电压穿越控制策略研究[J]. 电力电容器与无功补偿,2021, 42(1):191-198.
|
| [19] |
李志华,曾江,黄骏翅,等. 基于线性自抗扰控制的微网逆变器时-频电压控制策略[J]. 电力系统自动化,2020, 44(10):145-154.
|
| [20] |
|
| [21] |
卢一菲,陈冲,金成日,等. 直驱永磁风电机组高电压穿越协调控制策略[J]. 电力系统保护与控制,2020, 48(15):50-60.
|
/
| 〈 |
|
〉 |