PDF(8483 KB)
PDF(8483 KB)
PDF(8483 KB)
基于响应面法的垂直轴风力机结构参数优化
Structural Parameter Optimization of Vertical Axis Wind Turbine Based on Response Surface Method
为提高垂直轴风力机的风能利用率,常采用正交分析结合数值模拟的方法进行结构参数优化。然而,正交分析法的因素水平值设置对优化结果有较大影响。为此,利用响应面法结合遗传算法(genetic algorithm,GA)对垂直轴风力机结构参数进行优化。首先,采用响应面中心复合设计(central composite design, CCD)法构建了风力机的回归模型,并通过计算流体力学(computational fluid dynamics, CFD)方法和方差分析研究了结构因素对功率系数影响的显著性顺序。然后,基于GA对其进行结构参数优化,并与传统的正交分析法进行对比。最后,结果表明响应面法得到的风力机最大功率系数为0.193,比正交分析结果提高3.6%,且响应面法获得的结构最优参数值可处在给定的因素水平值区间范围外。
In order to improve the utilization rate of wind energy of vertical axis wind rotor, the orthogonal analysis method combined with numerical simulation are usually used to optimize the structural parameters. However, the setting of factor values and level values for orthogonal analysis has a great influence on the optimization results. In this study, the structural parameters of vertical axis wind rotor are optimized by using response surface method (RSM) combined with genetic algorithm (GA). Firstly, the regression model of the wind rotor is constructed by central composite design (CCD) method, and the order of significance of the influence of structural factors on the power coefficient was studied by computational fluid dynamics (CFD) method and analysis of variance. Then, the structural parameters are optimized based on GA and compared with the traditional orthogonal analysis method. The results show that the maximum power coefficient of the wind rotor obtained by the RSM is 0.193, which is 3.6% higher than the results of orthogonal analysis. The optimal parameter values obtained by the RSM can be outside the range of the given factor values and level values. Therefore, the optimal solution obtained by the RSM is more accurate and has better adaptability to the optimization of the structural parameters of the vertical axis wind rotor.
响应面法 / 垂直轴风力机 / 结构参数优化 / 正交分析 / 数值模拟
response surface method / vertical axis wind rotor / structural parameter optimization / orthogonal analysis / numerical simulation
| [1] |
陈昊,戴孟祎,韩兆龙,等. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报,2023, 57(6):642-652.
|
| [2] |
杨仁杰,李宇星,吴绍云,等. 含风力发电的互联电力系统自动发电控制优化方法研究[J]. 分布式能源,2020, 5(6):18-26.
|
| [3] |
汪泉,甘笛,杨书益,等. 考虑攻角范围的垂直轴风力机叶片翼型优化设计[J]. 农业工程学报,2020, 36(24):38-45.
|
| [4] |
戴孟祎,张志豪,涂佳黄,等. 尾缘襟翼偏转角对不同翼型的垂直轴风力机气动影响研究[J]. 上海交通大学学报,2022, 56(12):1619-1629.
|
| [5] |
张唯,叶舟,李春,等. 风透镜优化构型对垂直轴风力机气动性能研究[J]. 太阳能学报,2023, 44(3):39-45.
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
许小明,袁志强,李庆煜,等. 基于CFD与风洞实验的缩比风力机三维效应修正公式效果分析[J]. 中国电力,2020, 53(2):92-98.
|
| [14] |
何娇,金鑫,谢双义,等. 基于不同CFD建模复杂度的垂直轴风力机气动性能分析[J]. 太阳能学报,2021, 42(12):150-156.
|
| [15] |
张立军,顾嘉伟,朱怀宝,等. 垂直轴风力机尾缘开裂襟翼气动性能及其偏转角调节规律[J]. 中南大学学报(自然科学版), 2020, 51(4):931-943.
|
| [16] |
韩成荣,陈永艳,田瑞,等. 布置粗糙带的垂直轴风力机输出特性研究[J]. 可再生能源,2020, 38(12):1615-1620.
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
王鹏,包道日娜,吴胜胜,等. 基于静力学分析的新型变桨风力机关键齿轮参数优化[J]. 太阳能学报,2023, 44(7):456-462.
|
| [24] |
唐鹏,党新安,杨立军,等. 响应面法优化芹菜纤维植物空心胶囊的制备工艺[J]. 中国食品学报,2021, 21(3):107-117.
|
| [25] |
孔祥韶,杨豹,周沪,等. 基于响应面法的纤维金属层合板抗弹性能优化设计[J]. 爆炸与冲击,2022, 42(4):84-96.
|
| [26] |
胡晶,翟九童,张心明,等. 基于响应面法的双级串联轴承结构优化设计[J]. 兵工学报,2022, 43(3):694-703.
|
| [27] |
|
| [28] |
张坤,于慎波,翟凤晨,等. 大容量外转子永磁风力发电机组转子结构的轻量化设计[J]. 机电工程,2020, 37(12):1547-1552.
|
| [29] |
马祺敏,王加浩,张洋,等. 风力机翼型尾缘三角襟翼气动性能的参数化研究[J]. 工程热物理学报,2022, 43(6):1493-1502.
|
| [30] |
|
| [31] |
贺德幸,王孝东,刘杰,等. 基于SST k-ω湍流模型的提升竖井活塞风效应研究[J]. 有色金属工程,2022, 12(8):149-158.
|
| [32] |
|
| [33] |
张强,缪维跑,刘青松,等. 基于多目标遗传算法的垂直轴风力机专用翼型优化设计[J]. 太阳能学报,2023, 44(4):9-16.
|
| [34] |
常国锋. 基于多目标遗传算法的多配置风电机组控制[J]. 科学技术与工程,2022, 22(1):220-227.
|
/
| 〈 |
|
〉 |