基于变论域模糊控制的VSG自适应控制策略

朱晓龙,刘毅力,刘圣荇

分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 19-28.

PDF(7510 KB)
PDF(7510 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 19-28. DOI: 10.16513/j.2096-2185.DE.2308503
学术研究

基于变论域模糊控制的VSG自适应控制策略

作者信息 +

VSG Adaptive Control Strategy Based on Variable Universe Fuzzy Control

Author information +
文章历史 +

摘要

针对虚拟同步发电机(virtual synchronous generator,VSG)控制在负载扰动或电网频率波动下引起的有功功率与输出频率振荡问题,结合变论域思想提出一种VSG改进模糊自适应控制策略。首先,建立VSG有功-频率环小信号模型,分析虚拟惯量与阻尼系数对系统暂态过程的影响,为参数选取提供依据。其次,依据功角特性曲线确定参数与输出频率间的变化关系,以此为基础设计模糊控制器动态调节虚拟惯量与阻尼系数。之后,通过添加伸缩因子模糊控制器完成模糊论域的动态整定,其与增加模糊规则等效,可提高控制精度。最后,在Matlab/Simulink中搭建单机VSG模型,对几种自适应控制进行仿真对比,结果表明所提出的控制策略在抑制功率和频率超调及降低调节时间方面表现更加优异,验证了该控制策略的有效性和优越性。

Abstract

Aiming at the problem of active power and output frequency oscillation caused by load disturbances or grid frequency fluctuations in virtual synchronous generator (VSG) control, an improved fuzzy adaptive control strategy for VSG combined with the method of variable universe is proposed. Firstly, this paper establishes a small signal model of VSG active-frequency loop to analyze the influence of virtual inertia and damping coefficient on the system transient process, which provides the basis for parameter selection. Secondly, through the power angle characteristic curve, the variation relationship between the parameters and the output frequency is determined. On this basis, a fuzzy controller is designed to dynamically adjust the virtual inertia and damping coefficient. Then, dynamic tuning of the fuzzy domain is achieved by incorporating a telescopic factor fuzzy controller, which effectively increases the number of fuzzy rules and enhances control accuracy. Finally, a single VSG model is built in Matlab/Simulink to simulate and compare several adaptive strategies. The results demonstrate that the proposed control strategy exhibits superior performance in suppressing power and frequency overshoot and reducing regulation time, thus the effectiveness and superiority of this control strategy are verified.

关键词

虚拟同步发电机(VSG) / 模糊控制 / 变论域 / 自适应控制 / 伸缩因子

Key words

virtual synchronous generator (VSG) / fuzzy control / variable universe / adaptive control / telescopic factor

引用本文

导出引用
朱晓龙, 刘毅力, 刘圣荇. 基于变论域模糊控制的VSG自适应控制策略[J]. 分布式能源. 2023, 8(5): 19-28 https://doi.org/10.16513/j.2096-2185.DE.2308503
Xiaolong ZHU, Yili LIU, Shengxing LIU. VSG Adaptive Control Strategy Based on Variable Universe Fuzzy Control[J]. Distributed Energy Resources. 2023, 8(5): 19-28 https://doi.org/10.16513/j.2096-2185.DE.2308503
中图分类号: TK01;TM76   

参考文献

[1]
尹昌洁,权楠,苏凯,等. 我国分布式能源发展现状及展望[J]. 分布式能源2022, 7(2):1-7.
YIN Changjie, QUAN Nan, SU Kai, et al. Status and outlook of distributed energy development in China[J]. Distributed Energy, 2022, 7(2):1-7.
[2]
管飞,卫思明,付文启,等. 光伏电源经新能源同步机并网的仿真研究[J]. 智慧电力2021, 49(7):23-30.
GUAN Fei, WEI Siming, FU Wenqi, et al. Simulation of photovoltaic power connected to grid by motor-generator pair[J]. Smart Power, 2021, 49(7):23-30.
[3]
温佳鑫,卜思齐,陈麒宇,等. 基于数据学习的新能源高渗透电网频率风险评估[J]. 发电技术2021, 42(1):40-47.
WEN Jiaxin, BU Siqi, CHEN Qiyu, et al. Data learning-based frequency risk assessment in a high-penetrated renewable power system[J]. Power Generation Technology, 2021, 42(1):40-47.
[4]
武海燕,闫桂红,刘紫玉,等. 考虑安全稳定约束的电网新能源承载能力分析[J]. 内蒙古电力技术2022, 40(4):61-67.
WU Haiyan, YAN Guihong, LIU Ziyu, et al. Analysis of new energy carrying capacity of power grid considering security and stability constraints[J]. Inner Mongolia Electric Power, 2022, 40(4):61-67.
[5]
ZHONG Q C, WEISS G. Synchronverters: Inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4):1259-1267.
[6]
吕志鹏,盛万兴,钟庆昌,等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报2014, 34(16):2591-2603.
Zhipeng, SHENG Wanxing, ZHONG Qingchang, et al. Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16):2591-2603.
[7]
刘中建,周明,李昭辉,等. 高比例新能源电力系统的惯量控制技术与惯量需求评估综述[J]. 电力自动化设备2021, 41(12):1-11;1-11,53.
LIU Zhongjian, ZHOU Ming, LI Zhaohui, et al. Review of inertia control technology and requirement evaluation in renewable-dominant power system[J]. Electric Power Automation Equipment, 2021, 41(12):1-11;1-11,53.
[8]
ALIPOOR J, MIURA Y, ISE T. Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2):451-458.
[9]
杨赟,梅飞,张宸宇,等. 虚拟同步发电机转动惯量和阻尼系数协同自适应控制策略[J]. 电力自动化设备2019, 39(3):125-131.
YANG Yun, MEI Fei, ZHANG Chenyu, et al. Coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous generator[J]. Electric Power Automation Equipment, 2019, 39(3):125-131.
[10]
沈志雨,刘毅力,郑博文,等. 基于自适应VSG的微网光储充放电控制技术[J]. 分布式能源2021, 6(5):18-25.
SHEN Zhiyu, LIU Yili, ZHENG Bowen, et al. Microgrid optical storage charge and discharge control technology based on adaptive virtual synchronous generator[J]. Distributed Energy, 2021, 6(5):18-25.
[11]
邹培根,孟建辉,王毅,等. 灵活虚拟同步机主要控制参数对系统频率稳定性的影响分析[J]. 高电压技术2018, 44(4):1335-1342.
ZOU Peigen, MENG Jianhui, WANG Yi, et al. Influence analysis of the main control parameters in FVSG on the frequency stability of the system[J]. High Voltage Engineering, 2018, 44(4):1335-1342.
[12]
王毅,黑阳,付媛,等. 基于变下垂系数的直流配电网自适应虚拟惯性控制[J]. 电力系统自动化2017, 41(8):116-124.
WANG Yi, HEI Yang, FU Yuan, et al. Adaptive virtual inertia control of DC distribution network based on variable droop coefficient[J]. Automation of Electric Power Systems, 2017, 41(8):116-124.
[13]
杨旭红,姚凤军,郝鹏飞,等. 基于改进型RBF神经网络的VSG转动惯量自适应控制[J]. 电测与仪表2021, 58(2):112-117.
YANG Xuhong, YAO Fengjun, HAO Pengfei, et al. Adaptive inertia control for VSG based on improved RBF neural network[J]. Electrical Measurement & Instrumentation, 2021, 58(2):112-117.
[14]
高子轩,赵晋斌,杨旭红,等. 基于RBF的VSG转动惯量和阻尼系数自适应控制策略[J]. 电力建设2022, 43(9):132-139.
GAO Zixuan, ZHAO Jinbin, YANG Xuhong, et al. RBF-based adaptive control strategy of rotational inertia and damping coefficient for VSG[J]. Electric Power Construction, 2022, 43(9):132-139.
[15]
KERDPHOL T, WATANABE M, HONGESOMBUT K, et al. Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration[J]. IEEE Access, 2019, 7:76071-76083.
[16]
程国栋,邵宣,王贵峰. 虚拟同步发电机参数自适应控制策略[J]. 可再生能源2021, 39(12):1655-1661.
CHENG Guodong, SHAO Xuan, WANG Guifeng. Parameter adaptive control strategy of virtual synchronous generator[J]. Renewable Energy Sources, 2021, 39(12):1655-1661.
[17]
马宇鑫,赵巧娥. 基于模糊控制的虚拟同步发电机参数自适应控制策略[J]. 自动化与仪表2022, 37(8):24-29.
MA Yuxin, ZHAO Qiaoe. Adaptive control strategy of virtual synchronous generator parameters based on fuzzy control[J]. Automation & Instrumentation, 2022, 37(8):24-29.
[18]
杨帆,邵银龙,李东东,等. 一种计及储能容量和SOC约束的模糊自适应VSG控制策略[J]. 电网技术2021, 45(5):1869-1876.
YANG Fan, SHAO Yinlong, LI Dongdong, et al. Fuzzy adaptive VSG control strategy considering energy storage capacity and SOC constraint[J]. Power System Technology, 2021, 45(5):1869-1876.
[19]
吴舟,廖栩沣,陈明洋,等. 基于虚拟阻抗的并联VSG改进控制策略研究[J]. 电力科学与工程2022, 38(5):19-28.
WU Zhou, LIAO Xufeng, CHEN Mingyang, et al. Research on improved control strategy of parallel VSG based on virtual impedance[J]. Electric Power Science and Engineering, 2022, 38(5):19-28.
[20]
何国庆,王伟胜,刘纯,等. 分布式电源并网技术标准研究[J]. 中国电力2020, 53(4):1-12;1-12,176.
HE Guoqing, WANG Weisheng, LIU Chun, et al. Study on technical standard of distributed resources grid integration[J]. Electric Power, 2020, 53(4):1-12;1-12,176.
[21]
李洪兴. Fuzzy控制的本质与一类高精度Fuzzy控制器的设计[J]. 控制理论与应用1997, 14(6):868-872.
LI Hongxing. The essence of fuzzy control and a kind of fine fuzzy controller[J]. Control Theory and Technology, 1997, 14(6):868-872.
[22]
LIU Gang, JIANG Wei, WANG Qi, et al. Enhanced variable universe fuzzy proportional-integral-derivative control of structural vibration with real-time adaptive contracting-expanding factors[J]. Journal of Vibration and Control, 2022, 28:15-16.
[23]
文力,陈志辉,郭润龙,等. 变论域模糊PID控制在交流发电系统中的应用[J]. 电机与控制应用2020, 47(2):34-41.
WEN Li, CHEN Zhihui, GUO Runlong, et al. Application of variable universe fuzzy PID control in AC power generation system[J]. Electric Machines & Control Application, 2020, 47(2):34-41.
[24]
李志军,王硕,张家安,等. 基于变论域模糊逻辑的互联电力系统负荷频率控制[J]. 电力系统保护与控制2021, 49(16):151-160.
LI Zhijun, WANG Shuo, ZHANG Jiaan, et al. Variable universe fuzzy logic-based load frequency control in an interconnected power system[J]. Power System Protection and Control, 2021, 49(16):151-160.
[25]
吕旭旭,邵天章,谷志峰. 基于Simulink变论域算法仿真技术研究[J]. 计算机仿真2022, 39(2):327-331.
Xuxu, SHAO Tianzhang, GU Zhifeng. Research on simulation technology of variable universe algorithm based on simulink[J]. Computer Simulation, 2022, 39(2):327-331.
[26]
谢雨岑,邹见效,彭超. 基于变论域模糊增量理论的质子交换膜燃料电池温度控制[J]. 控制理论与应用2019, 36(3):428-435.
XIE Yucen, ZOU Jianxiao, PENG Chao. Temperature control of PEMFC system based on variable universe fuzzy incremental theory[J]. Control Theory and Technology, 2019, 36(3):428-435.

基金

国家自然科学基金项目(61871318)

PDF(7510 KB)

Accesses

Citation

Detail

段落导航
相关文章

/