基于图卷积神经网络的电力系统暂态稳定评估

薛栋烽,姚方,文福拴,张新宇,岳文全

分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 36-43.

PDF(1753 KB)
PDF(1753 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 36-43. DOI: 10.16513/j.2096-2185.DE.2308505
学术研究

基于图卷积神经网络的电力系统暂态稳定评估

作者信息 +

Transient Stability Assessment of Power Systems Based on Graph Convolutional Neural Networks

Author information +
文章历史 +

摘要

随着新能源高渗透、特高压输电互联及电网数字化智能化等新兴技术的高速发展,电力系统结构变得更加复杂,因此对电力系统的安全稳定运行工作提出了更高要求。基于此,给出一种以图卷积神经网络模型为基础的暂态稳定分析方法,将短时模拟与神经网络预测相结合,减少暂态稳定分析所需周期,该方法适用于多种仿真分析场景。同时,将图卷积神经网络代理模型与遗传算法相结合,快速稳定地完成针对预想故障集的暂态稳定中预防控制优化策略的求解。与传统暂态稳定分析方法相比,提出的方法所需运行时间短、效率高。基于IEEE-30和IEEE-39节点系统的测试结果验证了所提方法的适用性、高效性和优越性。

Abstract

With the rapid development of emerging technologies such as high penetration of new energy, ultra-high voltage transmission interconnection and power grid digital intelligence, the structure of power system has become more complex and diverse, which puts forward various requirements for the safe operation and stability of the power system. Based on this, a transient stability analysis based on graph convolutional network model is given, which combines short-time simulation and neural network prediction to reduce the cycle time required for transient stability analysis. The method is applicable to a wide range of simulation analysis scenarios. Meanwhile, the agent model of graph convolutional network is combined with genetic algorithm to complete the solution of preventive control optimization strategy quickly and stably in transient stability for the contingency set. Compared with the traditional transient stability analysis, the method proposed in this paper requires shorter running time and is highly efficient. The test results based on the IEEE-30 and IEEE-39 node systems verify the applicability, efficiency and superiority of the proposed method.

关键词

新能源 / 图卷积神经网络 / 预想故障集 / 暂态稳定

Key words

new energy / graph convolutional network / contingency set / transient stability

引用本文

导出引用
薛栋烽, 姚方, 文福拴, . 基于图卷积神经网络的电力系统暂态稳定评估[J]. 分布式能源. 2023, 8(5): 36-43 https://doi.org/10.16513/j.2096-2185.DE.2308505
Dongfeng XUE, Fang YAO, Fushuan WEN, et al. Transient Stability Assessment of Power Systems Based on Graph Convolutional Neural Networks[J]. Distributed Energy Resources. 2023, 8(5): 36-43 https://doi.org/10.16513/j.2096-2185.DE.2308505
中图分类号: TK01;TM74   

参考文献

[1]
任建强,王璐阳,吴家浩,等. 基于情景构建与推演的新能源电力设备运行风险评估[J]. 清华大学学报(自然科学版), 2022, 62(10):1571-1578.
REN Jianqiang, WANG Luyang, WU Jiahao, et al. Operational risk assessments of new energy power equipment based on scenario construction and deduction[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(10):1571-1578.
[2]
唐黄正,朱志伟. 智能电网对于现代电力系统的需求与响应研究[J]. 科技资讯2022, 20(19):61-64.
TANG Huangzheng, ZHU Zhiwei. Research status and prospect of transient stability assessment methods of power system[J]. Science and Technology Information, 2022, 20(19):61-64.
[3]
张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源2021, 6(6):1-8.
ZHANG Xunkui. A roadmap for developing a new power system with new energy as the main body[J]. Distributed Energy, 2021, 6(6):1-8.
[4]
温佳鑫,卜思齐,陈麒宇,等. 基于数据学习的新能源高渗透电网频率风险评估[J]. 发电技术2021, 42(1):40-47.
WEN Jiaxin, BU Siqi, CHEN Qiyu, et al. Data learning-based frequency risk assessment in a high-penetrated renewable power system[J]. Power Generation Technology, 2021, 42(1):40-47.
[5]
郭晨,王碧阳,李立,等. 特高压直流送端系统的运行约束及新能源消纳挑战研究[J]. 智慧电力2021, 49(5):56-62.
GUO Chen, WANG Biyang, LI Li, et al. Power system operation constraint and new energy consumption challenge of UHV DC transmission system[J]. Smart Power, 2021, 49(5):56-62.
[6]
武海燕,闫桂红,刘紫玉,等. 考虑安全稳定约束的电网新能源承载能力分析[J]. 内蒙古电力技术2022, 40(4):61-67.
WU Haiyan, YAN Guihong, LIU Ziyu, et al. Analysis of new energy carrying capacity of power grid considering security and stability constraints[J]. Inner Mongolia Electric Power, 2022, 40(4):61-67.
[7]
谢彦祥,肖汉,李嘉逸,等. 电力系统暂态稳定评估方法研究现状及展望[J]. 电工电气2020(11):1-9;1-9,27.
XIE Yanxiang, XIAO Han, LI Jiayi, et al. Research status and prospects of transient stability assessment methods for power systems[J]. Electrotechnics Electric, 2020 (11):1-9;1-9,27.
[8]
柴尔烜. 基于机器学习的电力系统故障诊断与暂态稳定评估研究[D]. 杭州:杭州电子科技大学,2020.
CHAI Erxuan. Machine learning based power system fault diagnosis and transient stability assessment[D]. Hangzhou: Hangzhou Dianzi University, 2020.
[9]
吕睿,薛禹胜,黄天罡,等. 关于电力系统失稳判据病态研究的评述[J]. 电力系统自动化2022, 46(18):169-178.
Rui, XUE Yusheng, HUANG Tiangang, et al. Review on ill-condition research of power system instability criterion[J]. Automation of Electric Power Systems, 2022, 46(18):169-178.
[10]
ROSENTHAL W S, TARTAKOVSKY A M, HUANG Zhenyu. Ensemble Kalman filter for dynamic state estimation of power grids stochastically driven by time-correlated mechanical input power[J]. IEEE Transactions on Power Systems, 2018, 33(4):3701-3710.
[11]
徐询,谢丽蓉,叶林,等. 基于非参数核密度估计的风电场有功功率双层优化模型[J]. 电力系统自动化2022, 46(2):43-55.
XU Xun, XIE Lirong, YE Lin, et al. Bi-level optimization model of active power for wind farm based on nonparametric kernel density estimation[J]. Automation of Electric Power Systems, 2022, 46(2):43-55.
[12]
周挺,杨军,周强明,等. 基于改进LightGBM的电力系统暂态稳定评估方法[J]. 电网技术2019, 43(6):1931-1940.
ZHOU Ting, YANG Jun, ZHOU Qiangming, et al. Power system transient stability assessment method based on modified LightGBM[J]. Power System Technology, 2019, 43(6):1931-1940.
[13]
SUN Kai, LIKHATE S, VITTAL V, et al. An online dynamic security assessment scheme using phasor measurements and decision trees[J]. IEEE Transactions on Power Systems, 2007, 22(4):1935-1943.
[14]
Jiaqing, PAWLAK M, ANNAKKAGE U D. Prediction of the transient stability boundary using the lasso[J]. IEEE Transactions on Power Systems, 2013, 28(1):281-288.
[15]
陈康,熊建斌,苏乃权,等. 基于相关向量机的故障诊断方法研究[J]. 机床与液压2022, 50(3):176-186.
CHEN Kang, XIONG Jianbin, SU Naiquan, et al. Research on fault diagnosis method based on relevance vector machine[J]. Machine Tool and Hydraulics, 2022, 50(3):176-186.
[16]
严明明. 基于深度学习的复杂时间序列预测模型研究[D]. 武汉:华中科技大学,2020.
YAN Mingming. Research of complex time series forecasting models based on deep learning[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[17]
SHARIFIAN A, SHARIFIAN S. A new power system transient stability assessment method based on type-2 fuzzy neural network estimation[J]. International Journal of Electrical Power & Energy Systems, 2015, 64:71-87.
[18]
胡伟,郑乐,闵勇,等. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术2017, 41(10):3140-3146.
HU Wei, ZHENG Le, MIN Yong, et al. Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology, 2017, 41(10):3140-3146.
[19]
张业宇. 基于人工智能的交直流混联系统暂态稳定快速评估研究[D]. 杭州:杭州电子科技大学,2021.
ZHANG Yeyu. Research on rapid assessment of transient stability of AC/DC hybrid system based on artificial intelligence[D]. Hangzhou: Hangzhou Dianzi University, 2021.
[20]
刘华,刘江永. 基于图卷积神经网络的电力变压器故障诊断[J]. 湖南科技大学学报(自然科学版), 2021, 36(3):75-81.
LIU Hua, LIU Jiangyong. Fault diagnosis of power transformer based on graph convolutional network[J]. Journal of Hunan University of Science and Technology(Natural Science Edition), 2021, 36(3):75-81.
[21]
史炯. 基于图神经网络的时空负荷预测与潮流优化技术研究[D]. 武汉:华中科技大学,2021.
SHI Jiong. Research on spatio-temporal load forecasting and power flow optimization technology based on graph neural network[D]. Wuhan: Huazhong University of Science and Technology, 2021.

基金

山西省回国留学人员科研教研资助项目(2022-005)

PDF(1753 KB)

Accesses

Citation

Detail

段落导航
相关文章

/