不同强度湍流风对风力机气动载荷的影响

张立栋,石强,姜铁骝,李钦伟,张磊,徐峰

分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 61-68.

PDF(3358 KB)
PDF(3358 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 61-68. DOI: 10.16513/j.2096-2185.DE.2308508
应用技术

不同强度湍流风对风力机气动载荷的影响

作者信息 +

Influence of Turbulent Wind of Different Intensity on Aerodynamic Load of Wind Turbine

Author information +
文章历史 +

摘要

湍流强度是影响风力机载荷的重要因素之一。基于OpenFAST软件对NREL-5 MW风力机进行了不同强度湍流风为入流条件下的数值计算,利用Turbsim软件生成的5%、10%、15%和20%这4种湍流强度的湍流风作为入流条件,探究了不同湍流强度对风力机叶根处的剪切力和弯矩的影响,并分析了不同湍流强度下风力机叶片整体的载荷分布情况。结果表明:随着湍流强度的增加,风力机的气动载荷和气动功率波动幅值相应出现规律性的增加,但大体变化趋势不变。10%、15%和20%湍流强度下的气动功率标准差比5%湍流强度下的分别高出87%、163%和243%,摆振弯矩标准差比5%湍流强度下的分别高出30%、64%和95%;叶片上的弯矩载荷从叶根向叶尖方向逐渐减小,且随着湍流强度的增加,叶片上的弯矩标准差值也随之增加,在叶根处差别最大,从叶根向叶尖方向逐渐减小,到叶尖处完全重合。且10%、15%和20%湍流强度下的叶根处第一个节点位置的挥舞弯矩比5%湍流强度下的摆振弯矩分别高出44.94%、93.1%和137%。湍流强度的增加对叶片的摆振弯矩影响最大。

Abstract

Turbulence intensity is one of the important factors affecting the load of wind turbine. The numerical calculation of NREL-5MW wind turbine with different turbulence intensity turbulent wind as the inlet condition is carried out based on the OpenFAST software, and the turbulent wind with four turbulence intensities of 5%, 10%, 15% and 20% generated by the Turbsim software is utilized as the inlet condition to investigate the effect of different turbulence intensities on shear force and bending moment at the root of wind turbine blades, and analyze the overall load distribution of the wind turbine blades under different turbulence intensities. The overall load distribution of the wind turbine blade under different turbulence intensities is also analyzed. The results show that, with the increase of turbulence intensity, the aerodynamic load and aerodynamic power fluctuation amplitude of the wind turbine are increased regularly, but the general trend is the same. the standard deviation of the aerodynamic power at 10%, 15% and 20% turbulence intensity is 87%, 163% and 243% higher than that at 5% turbulence intensity, and the standard deviation of the oscillating bending moment at 10%, 15% and 20% turbulence intensity is 30%, 64% and 95% higher than that at 5% turbulence intensity, and the standard deviation of the bending moment on the blades is 30%, 64% and 95% higher than that at 5% turbulence intensity; the bending moment load on the blade gradually decreases from the leaf root to the tip direction, and the standard deviation of the bending moment on the blade increases with the increase of the turbulence intensity, and the difference is the largest at the leaf root, which gradually decreases from the leaf root to the tip direction, and then completely overlaps at the tip. And the swing bending moment at the first node position at the blade root at 10%, 15% and 20% turbulence intensity is 44.94%, 93.1% and 137% higher than that at 5% turbulence intensity, respectively. The increase in turbulence intensity has the greatest effect on the swing bending moment of the blade.

关键词

风力机 / 湍流强度 / 气动载荷 / 叶根弯矩 / OpenFAST

Key words

wind turbines / turbulence strength / aerodynamic loads / blade root bending moment / OpenFAST

引用本文

导出引用
张立栋, 石强, 姜铁骝, . 不同强度湍流风对风力机气动载荷的影响[J]. 分布式能源. 2023, 8(5): 61-68 https://doi.org/10.16513/j.2096-2185.DE.2308508
Lidong ZHANG, Qiang SHI, Tieliu JIANG, et al. Influence of Turbulent Wind of Different Intensity on Aerodynamic Load of Wind Turbine[J]. Distributed Energy Resources. 2023, 8(5): 61-68 https://doi.org/10.16513/j.2096-2185.DE.2308508
中图分类号: TK83   

参考文献

[1]
Global Wind Energy Council(GWEC). Global wind report 2021[R]. Brussels: GWEC, 2021.
[2]
MOUZAKIS F, MORFIADAKIS E, DELLAPORTAS P. Fatigue loading parameter identification of a wind turbine operating in complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 82(1-3):69-88.
[3]
安军,周永超,周毅博,等. 考虑风荷不确定性的电源无功电压调差系数整定方法研究[J]. 东北电力大学学报2023, 43(4):30-38.
AN Jun, ZHOU Yongchao, ZHOU Yibo, et al. Optimization method for var-voltage adjustment coefficient considering wind power and load uncertainty[J]. Journal of Northeast Electric Power University. 2023, 43(4):30-38.
[4]
李娟,王玲,孙康杰,等. 考虑风电不确定性和有功无功联合调整的两阶段优化调度[J]. 东北电力大学学报2023, 43(3):72-81.
LI Juan, WANG Ling, SUN Kangjie, et al. Two-stage optimal dispatch considering uncertainty of wind power and joint regulation of active and reactive power[J]. Journal of Northeast Electric Power University. 2023, 43(3):72-81.
[5]
张磊,李继影,李钦伟,等. 风力机偏航系统控制策略研究现状及进展[J]. 发电技术2021, 42(3):306-312.
ZHANG Lei, LI Jiying, LI Qinwei, et al. Status and prospect of yaw system control strategy for wind turbines[J]. Power Generation Technology, 2021, 42(3):306-312.
[6]
刘洪波,盖雪扬,孙黎,等. 计及数据降维和数据清洗的超短期风电功率预测[J]. 东北电力大学学报2023, 43(4):1-91-9.
LIU Hongbo, GAI Xueyang, SUN Li, et al. Ultra-short-term wind power prediction considering data reduction and data cleaning[J]. Journal of Northeast Electric Power University, 2023, 43(4):1-91-9.
[7]
杨冬锋,冉子旭,姜超. 面向规模化风电消纳的电-气-氢能源互联系统协同规划[J]. 东北电力大学学报2023, 43(3):91-100.
YANG Dongfeng, RAN Zixu, JIANG Chao. Collaborative planning of electricity-gas-hydrogen energy interconnection system for large-scale wind power consumption[J]. Journal of Northeast Electric Power University, 2023, 43(3):91-100.
[8]
王同光,田琳琳,钟伟,等. 风能利用中的空气动力学研究进展Ⅱ:入流和尾流特性[J]. 空气动力学学报2022, 40(4):22-50.
WANG Tongguang, TIAN Linlin, ZHONG Wei, et al. Aerodynamic research progress in wind energy Ⅱ:Inflow and wake characteristics[J]. Acta Rerodynamica Sinica, 2022, 40(4):22-50.
[9]
PEÑA A, RÉTHORÉ P E, RATHMANN O. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model[J]. Renewable Energy, 2014, 70(1):164-171.
[10]
DIMITROV N, NATARAJAN A, KELLY M. Model of wind shear conditional on turbulence and its impact on wind turbine loads[J]. Wind Energy, 2015, 18(11):1917-1931.
[11]
梁志,胡非,师宇,等. 塔影效应对平均风速和湍流强度影响的外场试验研究[J/OL]. 实验流体力学,1-10[2023-06-18].
LIANG Zhi, HU Fei, SHI Yu, et al. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J/OL]. Journal of Experiments in Fluid Mechanics, 1-10[2023-06-18].
[12]
沈宏涛,胡伟成,刘海坤,等. 高边坡复杂地形下风电机组机位的湍流风场研究[J/OL]. 工程力学:1-91-9[2023-06-18].
SHENG Hongtao, HU Weicheng, LIU Haikun, et al. Study on turbulent wind field of wind turbine site in high-slopecomplex terrain[J/OL]. Engineering Mechanics:1-91-9[2023-06-18].
[13]
郭兴铎,李银然,李仁年,等. 风力机翼型气动力非定常特性对湍流的敏感性[J]. 农业工程学报2023, 39(3):52-59.
GUO Xingduo, LI Yinran, LI Rennian, et al. Sensitivity of the aerodynamic force unsteady characteristics of wind turbine airfoilto turbulence[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3):52-59.
[14]
杨英健,贾彦,蔡畅,等. 湍流强度对风力机翼型气动性能的影响[J]. 工程热物理学报2023, 44(2):382-388.
YANG Yingjian, JIA Yan, CAI Chang, et al. Effect of turbulence intensity on aerodynamic performance of wind turbine airfoil[J]. Journal of Eengineering thermophysics, 2023, 44(2):382-388.
[15]
戎操,王地灵. 湍流强度对风机叶片风效应影响的试验研究[J]. 建筑结构2019, 49():357-361.
摘要
S1
RONG Cao, WANG Diling. Experimental study on effect of turbulence intensity on wind effect with fan blade[J]. Building Structure, 2019, 49():357-361.
S1
[16]
李德顺,苏进诚,李银然,等. 湍流度对水平轴风力机尾流及转矩特性的影响[J]. 兰州理工大学学报2021, 47(1):47-53.
LI Deshun, SU Jincheng, LI Yinran, et al. Study on turbulence effects on the wake and torque characteristics of horizontal axis wind turbine[J]. Journal of Lanzhou University of Technology, 2021, 47(1):47-53.
[17]
巫发明,杨从新,王靛,等. 湍流强度对风电机组动力学特性及载荷的影响[J]. 农业工程学报2020, 36(13):48-55.
WU Faming, YANG Congxin, WANG Dian, et al. Effects of turbulence intensity on dynamic characteristics and load of wind turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13):48-55.
[18]
刘兆,黄宇同,王丹丹,等. 横向湍流对风电机组载荷影响及其实测值研究[J]. 风能2022, 152(10):68-73.
[19]
李德顺,郭涛,李伟,等. 中性大气边界层中风力机的湍流演化及叶根载荷分析[J]. 科学通报2019, 64(17):1832-1843.
LI Deshun, GUO Tao, LI Wei, et al. Evolution of turbulence ina wind turbine flow field with a neutral atmospheric boundary layer and an analysis of the blade root load[J]. Chinese Science Bulletin, 2019, 64(17):1832-1843.
[20]
杨浩南. 不同来流条件下大型水平轴风力机的气动弹性分析[D]. 兰州:兰州理工大学,2020.
YANG Haonan. Aeroelastic analysis of large horizontal axis wind turbines under different inflow conditions[D]. Lanzhou: Lanzhou University of Technology, 2020.
[21]
KELLEY N D, JONKMAN B J, SCOTT G N, et al. Impact of coherent turbulence on wind turbine aeroelastic response and its simulation. technical report[R]. National Renewable Energy Laboratory (NREL), Golden, 2005.
[22]
KELLEY N D, OSGOOD R M, BIALASIEWICZ J T, et al. Using wavelet analysis to assess turbulence/rotor interactions[J]. Wind Energy, 2010, 3:121-134.
[23]
KELLEY N D. Turbulence-turbine interaction: The basis for the development of the turbsim stochastic simulator[R]. Technical Report, National Renewable Energy Laboratory (NREL), Golden. 2011.
[24]
ZHENG X, YAO Y, HU Z H, et al. Influence of turbulence intensity on the serodynamic performance of wind turbines based on the fluid-structure coupling method[J]. Applied Sciences. 2023, 13(1):250.
[25]
苏剑涛,郑书婷,严干贵,等. 基于改进FCM聚类算法的风电场等值建模研究[J]. 智慧电力2021, 49(10):68-74.
SU Jiantao, ZHENG Shuting, YAN Gangui, et al. Equivalent modeling of wind farm based on improved FCM clustering algorithm[J]. Smart Power, 2021, 49(10):68-74.
[26]
牛成,倪维东,刘建爽,等. 基于湍流度的风电机组动态柔性控制技术[J]. 风能2023(9):56-65.
[27]
张立栋,李国浩,杨世宇,等. 场间尾流对风电场发电量的影响[J]. 分布式能源2023, 8(1):57-62.
ZHANG Lidong, LI Guohao, YANG Shiyu, et al. Influence of wake between wind farms on wind power generation[J]. Distributed Energy, 2023, 8(1):57-62.
[28]
孙涛. 场间尾迹簇对风电场发电量和载荷的影响分析[J]. 分布式能源2021, 6(2):56-60.
SUN Tao. Analysis of influence of cluster wakes between wind farms on wind power generation and load[J]. Distributed Energy, 2021, 6(2):56-60.
[29]
苏进诚. 湍流度对水平轴风力机尾流及载荷特性影响研究[D]. 兰州:兰州理工大学,2019.
SU Jincheng. Study on the influence of turbulence on the wake and load characteristics of horizontal axis wind turbine[D]. Lanzhou: Lanzhou University of Technology, 2019.

基金

吉林省科技厅重点研发项目(20200403141SF)

PDF(3358 KB)

Accesses

Citation

Detail

段落导航
相关文章

/