PDF(1322 KB)
燃气电厂化学吸收二氧化碳捕获系统运行参数与能耗分析
王旭,杨昊,王满仓,李岩峰,田宇,王翀,金绪良,黄忠源,殷爱鸣
分布式能源 ›› 2023, Vol. 8 ›› Issue (5) : 69-76.
PDF(1322 KB)
PDF(1322 KB)
燃气电厂化学吸收二氧化碳捕获系统运行参数与能耗分析
Analysis of Operating Parameters and Energy Consumption of Chemical Absorption Carbon Dioxide Capture System in Natural Gas Power Plants
为明确燃气电厂二氧化碳捕集运行参数与系统用能关联机制,削减单位二氧化碳捕集能耗和成本,以450 MW级燃气电厂二氧化碳捕集与封存(carbon capture and storage,CCS)示范装置为研究对象,介绍CCS工艺的主要流程;通过对吸收塔和再生塔的系统性试验,对比分析了MEA和AMP-PZ这2种吸收剂的性能;考察烟气温度、吸收塔液气比、解吸塔压力、二氧化碳捕获率等工艺参数对再生能耗的影响。结果表明:MEA和AMP-PZ在吸收塔烟气温度为38 ℃、液气比分别为0.54和0.42、再生温度为112 ℃的运行条件下,再生能耗分别为4.49、4.24 MJ/kg。
In order to clarify the correlation mechanism between carbon dioxide capture operation parameters and system energy use in gas-fired power plants, and reduce the energy consumption and cost per unit of carbon dioxide capture, the carbon capture and storage (CCS) demonstration device of a 450 MW gas-fired power plant was taken as the research object, and the main process of CCS process was introduced. The properties of MEA and AMP-PZ absorbers were compared and analyzed by systematic test of absorber and regenerator. The effects of flue gas temperature, liquid gas ratio of absorber, desorption pressure and carbon dioxide capture rate on energy consumption were investigated. The results show that under the operating conditions of MEA and AMP-PZ with flue gas temperature of 38 ℃, liquid-gas ratio of 0.54 and 0.42, and regeneration temperature of 112 ℃, the regenerative energy consumption is 4.49 and 4.24 MJ/kg, respectively.
燃气电厂 / 二氧化碳捕集与封存(CCS) / 能耗
natural gas power plant / carbon capture and storage (CCS) / energy consumption
| [1] |
李政,陈思源,董文娟,等. 现实可行且成本可负担的中国电力低碳转型路径[J]. 洁净煤技术,2021, 27(2):1-7.
|
| [2] |
薛立林,肖岚. 对制定中国能源低碳“十四五”及中长期发展规划的认识和建议[J]. 国际石油经济,2020, 28(12):1-10.
|
| [3] |
王焕君,刘牛,郑棹方,等. 直接空气捕碳材料研究进展[J]. 发电技术,2022, 43(4):533-543.
|
| [4] |
童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力,2021, 49(5):1-6.
|
| [5] |
IEA. World energy outlook 2015[R]. International Energy Agency: Paris, France.
|
| [6] |
袁家海,徐燕,雷祺. 电力行业煤炭消费总量控制方案和政策研究[J]. 中国能源,2015, 37(3):11-17.
|
| [7] |
Energy Transitions Commission. China 2050: A fully developed rich zero-carbon economy[R]. Beijing: ETC, 2019.
|
| [8] |
侯建朝,谭忠富. 电力生产CO2排放变化影响因素分解[J]. 中国电力,2011, 44(11):39-42.
|
| [9] |
王常凯,谢宏佐. 中国电力碳排放动态特征及影响因素研究[J]. 中国人口资源与环境,2015, 25(4):21-27.
|
| [8] |
张蕾,邢大勇,芦玉铎,等. 新型吸收剂捕集燃气电厂烟气中二氧化碳的中试研究[J]. 分布式能源,2023, 8(4):55-62.
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
郭东方,刘练波,王金意,等. 燃气烟气1000 t/a CO2捕集中试试验研究[J]. 中国电机工程学报,2014, 34(23):3849-3855.
|
| [15] |
黄忠源,李进,安洪光,等. 燃烧后CO2捕获与燃气-蒸汽联合循环机组热力能源整合研究[J]. 中国电机工程学报,2017, 37(9):2644-2651.
|
| [16] |
安洪光,佟义英,赵莹,等. 燃气电厂烟气CO2捕集工艺实践[J]. 中国电力,2016, 49(9):175-180.
|
/
| 〈 |
|
〉 |