基于最近邻聚类的光伏制氢系统运行备用容量需求预估模型

周冬旭,徐荆州,张灿,魏鹏超

分布式能源 ›› 2023, Vol. 8 ›› Issue (6) : 36-41.

PDF(1223 KB)
PDF(1223 KB)
分布式能源 ›› 2023, Vol. 8 ›› Issue (6) : 36-41. DOI: 10.16513/j.2096-2185.DE.2308605
学术研究

基于最近邻聚类的光伏制氢系统运行备用容量需求预估模型

作者信息 +

A Model for Estimating the Operational Reserve Capacity Requirement of Photovoltaic-Hydrogen Production Systems Based on Nearest Neighbor Clustering

Author information +
文章历史 +

摘要

在预估光伏-制氢系统运行备用容量需求时,受光伏-制氢系统运行数据不确定性的影响,预估结果的误差偏大,为此,提出基于最近邻聚类的光伏-制氢系统运行备用容量需求预估模型。引入最近邻聚类中的不确定自然最近邻机制,以近邻数数量为基础,按稠密点、稀疏点、噪声点的分类标准,将数据集中的不确定光伏-制氢系统运行数据对象进行划分处理;在使用不确定自然邻域搜索算法获取到不确定的自然稳定状态输出结果后,根据特征值的差异性去除噪声点,借助不确定自然邻域密度因子对光伏-制氢系统运行数据进行聚类;在预估模型构建阶段,将径向对称的高斯径向基函数(radial basis function,RBF)作为核函数,并将所有的RBF输出结果映射到同一个空间中,得到光伏-制氢系统运行备用容量需求结果。测试结果表明,所提方法对最大备用容量需求预估结果的偏差始终稳定在250 MW以内,对最小备用容量需求预估结果的偏差始终稳定在150 MW以内,有效降低了能量管理的成本开销。

Abstract

When estimating the spare capacity requirement for the operation of photovoltaic-hydrogen systems, the estimation error is relatively large due to the uncertainty of operation data of photovoltaic-hydrogen production system. Therefore, a prediction model based on nearest neighbor clustering is proposed for estimating the spare capacity requirement for the operation of photovoltaic-hydrogen systems. In this model, the uncertain natural nearest neighbor mechanism in the nearest neighbor clustering is introduced to classify the data points based on their density, sparsity, and noise. The data set is divided into different groups of uncertain photovoltaic-hydrogen production system operation data objects. After obtaining the uncertain natural stable state output results using the uncertain natural neighbor search algorithm, the noise points are removed based on the difference of eigenvalues. Then, the photovoltaic-hydrogen production system operation data is clustered using the uncertain natural neighbor density factor. In the construction phase of the estimation model, the radial symmetric Gaussian radial basis function (RBF) is used as the kernel function, and all RBF output results are mapped to the same space to obtain the photovoltaic-hydrogen production system operational reserve capacity requirement results. The testing results show that the proposed method has a maximum estimation error of less than 250 MW for the maximum reserve capacity requirement and a minimum estimation error of less than 150 MW for the minimum reserve capacity requirement, effectively reducing the energy management cost.

关键词

最近邻聚类 / 光伏-制氢系统 / 运行备用容量 / 需求预估模型 / 不确定自然最近邻 / 特征值 / 高斯径向基函数(RBF) / 映射

Key words

nearest neighbor clustering / photovoltaic-hydrogen production system / running reserve capacity / demand estimation model / uncertain natural nearest neighbor / eigenvalue / Gaussian radial basis function (RBF) / mapping

引用本文

导出引用
周冬旭, 徐荆州, 张灿, . 基于最近邻聚类的光伏制氢系统运行备用容量需求预估模型[J]. 分布式能源. 2023, 8(6): 36-41 https://doi.org/10.16513/j.2096-2185.DE.2308605
Dongxu ZHOU, Jingzhou XU, Can ZHANG, et al. A Model for Estimating the Operational Reserve Capacity Requirement of Photovoltaic-Hydrogen Production Systems Based on Nearest Neighbor Clustering[J]. Distributed Energy Resources. 2023, 8(6): 36-41 https://doi.org/10.16513/j.2096-2185.DE.2308605
中图分类号: TK01; TM71   

参考文献

[1]
吴思嘉,迟方德,叶希,等. 高比例新能源电网运行备用容量需求概率动态评估方法[J]. 电力建设2023, 44(6): 126-134.
WU Sijia, CHI Fangde, YE Xi, et al. Probabilistic dynamic assessment for operating reserve requirements of power system with high penetrated renewables[J]. Electric Power Construction, 2023, 44(6): 126-134.
[2]
许丹,刘恺,丁强,等. 电力市场中备用容量需求评估研究:基于均衡分析制定备用机组的竞价策略[J]. 价格理论与实践2022, 42(7): 175-179.
XU Dan, LIU Kai, DING Qiang, et al. Research on reserve capacity demand evaluation in the electricity market: Based on equilibrium analysis to develop bidding strategies for reserve units[J]. Price: Theory & Practice, 2022, 42(7): 175-179.
[3]
邢文珑,薛宇,任永峰,等. 风氢耦合提升分散式风电消纳及低电压过渡能力研究[J]. 内蒙古电力技术2020, 38(2): 7-12.
XING Wenlong, XUE Yu, REN Yongfeng, et al. Research on wind-hydrogen coupling enhancing distributed wind power consumption and LVRT capability[J]. Inner Mongolia Electric Power, 2020, 38(2): 7-12.
[4]
李雪临,袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术2022, 43(2): 198-206.
LI Xuelin, YUAN Ling. Development status and suggestions of hydrogen production technology by offshore wind power[J]. Power Generation Technology, 2022, 43(2): 198-206.
[5]
李建林,李光辉,梁丹曦,等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源2021, 6(5): 1-9.
LI Jianlin, LI Guanghui, LIANG Danxi, et al. Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021, 6(5): 1-9.
[6]
巨云涛,李红权,于宗民,等. 考虑多元不确定性和备用需求的微电网双层鲁棒容量规划[J]. 电网技术2023, 47(8): 3343-3361.
JU Yuntao, LI Hongquan, YU Zongmin, et al. Bi-level robust capacity planning of micro-grid considering multivariate uncertainties and reserve demand[J]. Power System Technology, 2023, 47(8): 3343-3361.
[7]
陈艺华,徐帆,张炜,等. 新型电力系统面向能源安全的备用配置及留取标准研究[J]. 电力系统及其自动化学报2022, 34(4): 32-40.
CHEN Yihua, XU Fan, ZHANG Wei, et al. Research on reserve allocation of novel power system facing energy security and the corresponding preservation criterion[J]. Proceedings of the CSU-EPSA, 2022, 34(4): 32-40.
[8]
王仁顺,赵宇,马福元,等. 受端电网高比例可再生能源消纳的运行瓶颈分析与储能需求评估[J]. 电网技术2022, 46(10): 3777-3787.
WANG Renshun, ZHAO Yu, MA Fuyuan, et al. Operational bottleneck analysis and energy storage demand evaluation for high proportional renewable energy consumption in receiving-end grid[J]. Power System Technology, 2022, 46(10): 3777-3787.
[9]
桂前进,黄向前,麦立,等. 考虑时变备用需求的含大规模风电电力系统机组组合滚动优化[J]. 电气技术2021, 22(10): 34-42.
GUI Qianjin, HUANG Xiangqian, MAI Li, et al. Unit commitment rolling optimization of power system with a large-scale wind farm considering time-varying reserve requirement[J]. Electrical Engineering, 2021, 22(10): 34-42.
[10]
李滨,杨梦如,梁水莹,等. 基于DFT的多时间尺度系统备用需求分析[J]. 电力电容器与无功补偿2021, 42(4): 47-54.
LI Bin, YANG Mengru, LIANG Shuiying, et al. Reserve demand analysis of multi-time scale based on DFT[J]. Power Capacitor & Reactive Power Compensation, 2021, 42(4): 47-54.
[11]
张婧昕,彭斐. 计及需求响应的含间歇式可再生能源电力系统的多目标优化调度[J]. 电力电容器与无功补偿2021, 42(4): 95-103.
ZHANG Jingxin, PENG Fei. Multi-objective optimal scheduling of power systems with intermittent renewable energy considering demand response[J]. Power Capacitor & Reactive Power Compensation, 2021, 42(4): 95-103.
[12]
黄鹏翔,周云海,徐飞,等. 基于负荷与风电出力场景集的运行备用动态调度方法[J]. 可再生能源2021, 39(5): 658-665.
HUANG Pengxiang, ZHOU Yunhai, XU Fei, et al. Operating reserve dynamic dispatching method based on load and wind power scenario set[J]. Renewable Energy Resources, 2021, 39(5): 658-665.
[13]
边晓燕,孙明琦,许家玉,等. 计及灵活性储备的含风电多微电网系统分布式协调调控策略[J]. 电力自动化设备2021, 41(8): 47-54, 104.
BIAN Xiaoyan, SUN Mingqi, XU Jiayu, et al. Distributed coordinated dispatch and control strategy of multi-microgrid system with wind power considering flexibility reserve[J]. Electric Power Automation Equipmen, 2021, 41(8): 47-54, 104.
[14]
刘润泽,荆朝霞,刘煜. 考虑动态备用需求曲线的电能量-备用耦合出清模型[J]. 电力系统自动化2021, 45(6): 34-42.
LIU Runze, JING Zhaoxia, LIU Yu. Coupling clearing model of energy and reserve considering dynamic operation reserve demand curves[J]. Automation of Electric Power Systems, 2021, 45(6): 34-42.
[15]
SARMADI H, ENTEZAMI A, MAGALHÃES F. Unsupervised data normalization for continuous dynamic monitoring by an innovative hybrid feature weighting-selection algorithm and natural nearest neighbor searching[J]. Structural Health Monitoring, 2023, 22(6): 4005-4026.
[16]
周艳红,张迪,莫智文. 邻域概率粗糙集的不确定性度量[J]. 四川师范大学学报(自然科学版), 2021, 44(1): 136-142.
ZHOU Yanhong, ZHANG Di, MO Zhiwen. Uncertainty measures of neighborhood probabilistic rough sets[J]. Journal of Sichuan Normal University (Natural Science), 2021, 44(1): 136-142.
[17]
吴晓雪,李艳. 基于邻域关系粗糙集和不确定性的增量属性约简方法[J]. 西北大学学报(自然科学版), 2022, 52(5): 753-764.
WU Xiaoxue, LI Yan. Incremental attribute reduction method based on neighborhood rough sets and uncertainty[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(5): 753-764.
[18]
MAO C, WEI P, LIU R, et al. Line pilot protection of flexible DC grid based on traveling-wave JS divergence[J]. IEEE Access, 2022, 10(1): 129269-129278.
[19]
CAI Y, ZHANG Y, QU J, et al. Differential privacy preserving dynamic data release scheme based on Jensen-Shannon divergence[J]. China Communications, 2022, 19(6): 11-21.
[20]
BANACH M. Symmetrization in the calculation pipeline of Gauss function-based modeling of hydrophobicity in protein structures[J]. Symmetry, 2022, 14(9): 1876.
[21]
翟秀云,陈明通. 基于数据驱动的海水环境中3C钢腐蚀速率的预测[J]. 材料保护2022, 55(10): 50-55.
ZHAI Xiuyun, CHEN Mingtong. Data-driven prediction of corrosion rate of 3C steel in marine environment[J]. Materials Protection, 2022, 55(10): 50-55.
[22]
JIANG Q, ZHU L, SHU C, et al. Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow[J]. Acta Mechanica Sinica, 2021, 37(12): 1757-1772.
[23]
苏昕,徐立军,胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报2022, 43(6): 521-529.
SU Xin, XU Lijun, HU Bing. Modelling and analysis of photovoltaic PEM hydrogen production system considering multivariable factors[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 521-529.

基金

国网江苏省电力有限公司科技项目(J2023072)

PDF(1223 KB)

Accesses

Citation

Detail

段落导航
相关文章

/