PDF(1223 KB)
PDF(1223 KB)
PDF(1223 KB)
基于最近邻聚类的光伏制氢系统运行备用容量需求预估模型
A Model for Estimating the Operational Reserve Capacity Requirement of Photovoltaic-Hydrogen Production Systems Based on Nearest Neighbor Clustering
在预估光伏-制氢系统运行备用容量需求时,受光伏-制氢系统运行数据不确定性的影响,预估结果的误差偏大,为此,提出基于最近邻聚类的光伏-制氢系统运行备用容量需求预估模型。引入最近邻聚类中的不确定自然最近邻机制,以近邻数数量为基础,按稠密点、稀疏点、噪声点的分类标准,将数据集中的不确定光伏-制氢系统运行数据对象进行划分处理;在使用不确定自然邻域搜索算法获取到不确定的自然稳定状态输出结果后,根据特征值的差异性去除噪声点,借助不确定自然邻域密度因子对光伏-制氢系统运行数据进行聚类;在预估模型构建阶段,将径向对称的高斯径向基函数(radial basis function,RBF)作为核函数,并将所有的RBF输出结果映射到同一个空间中,得到光伏-制氢系统运行备用容量需求结果。测试结果表明,所提方法对最大备用容量需求预估结果的偏差始终稳定在250 MW以内,对最小备用容量需求预估结果的偏差始终稳定在150 MW以内,有效降低了能量管理的成本开销。
When estimating the spare capacity requirement for the operation of photovoltaic-hydrogen systems, the estimation error is relatively large due to the uncertainty of operation data of photovoltaic-hydrogen production system. Therefore, a prediction model based on nearest neighbor clustering is proposed for estimating the spare capacity requirement for the operation of photovoltaic-hydrogen systems. In this model, the uncertain natural nearest neighbor mechanism in the nearest neighbor clustering is introduced to classify the data points based on their density, sparsity, and noise. The data set is divided into different groups of uncertain photovoltaic-hydrogen production system operation data objects. After obtaining the uncertain natural stable state output results using the uncertain natural neighbor search algorithm, the noise points are removed based on the difference of eigenvalues. Then, the photovoltaic-hydrogen production system operation data is clustered using the uncertain natural neighbor density factor. In the construction phase of the estimation model, the radial symmetric Gaussian radial basis function (RBF) is used as the kernel function, and all RBF output results are mapped to the same space to obtain the photovoltaic-hydrogen production system operational reserve capacity requirement results. The testing results show that the proposed method has a maximum estimation error of less than 250 MW for the maximum reserve capacity requirement and a minimum estimation error of less than 150 MW for the minimum reserve capacity requirement, effectively reducing the energy management cost.
最近邻聚类 / 光伏-制氢系统 / 运行备用容量 / 需求预估模型 / 不确定自然最近邻 / 特征值 / 高斯径向基函数(RBF) / 映射
nearest neighbor clustering / photovoltaic-hydrogen production system / running reserve capacity / demand estimation model / uncertain natural nearest neighbor / eigenvalue / Gaussian radial basis function (RBF) / mapping
| [1] |
吴思嘉,迟方德,叶希,等. 高比例新能源电网运行备用容量需求概率动态评估方法[J]. 电力建设,2023, 44(6): 126-134.
|
| [2] |
许丹,刘恺,丁强,等. 电力市场中备用容量需求评估研究:基于均衡分析制定备用机组的竞价策略[J]. 价格理论与实践,2022, 42(7): 175-179.
|
| [3] |
邢文珑,薛宇,任永峰,等. 风氢耦合提升分散式风电消纳及低电压过渡能力研究[J]. 内蒙古电力技术,2020, 38(2): 7-12.
|
| [4] |
李雪临,袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术,2022, 43(2): 198-206.
|
| [5] |
李建林,李光辉,梁丹曦,等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源,2021, 6(5): 1-9.
|
| [6] |
巨云涛,李红权,于宗民,等. 考虑多元不确定性和备用需求的微电网双层鲁棒容量规划[J]. 电网技术,2023, 47(8): 3343-3361.
|
| [7] |
陈艺华,徐帆,张炜,等. 新型电力系统面向能源安全的备用配置及留取标准研究[J]. 电力系统及其自动化学报,2022, 34(4): 32-40.
|
| [8] |
王仁顺,赵宇,马福元,等. 受端电网高比例可再生能源消纳的运行瓶颈分析与储能需求评估[J]. 电网技术,2022, 46(10): 3777-3787.
|
| [9] |
桂前进,黄向前,麦立,等. 考虑时变备用需求的含大规模风电电力系统机组组合滚动优化[J]. 电气技术,2021, 22(10): 34-42.
|
| [10] |
李滨,杨梦如,梁水莹,等. 基于DFT的多时间尺度系统备用需求分析[J]. 电力电容器与无功补偿,2021, 42(4): 47-54.
|
| [11] |
张婧昕,彭斐. 计及需求响应的含间歇式可再生能源电力系统的多目标优化调度[J]. 电力电容器与无功补偿,2021, 42(4): 95-103.
|
| [12] |
黄鹏翔,周云海,徐飞,等. 基于负荷与风电出力场景集的运行备用动态调度方法[J]. 可再生能源,2021, 39(5): 658-665.
|
| [13] |
边晓燕,孙明琦,许家玉,等. 计及灵活性储备的含风电多微电网系统分布式协调调控策略[J]. 电力自动化设备,2021, 41(8): 47-54, 104.
|
| [14] |
刘润泽,荆朝霞,刘煜. 考虑动态备用需求曲线的电能量-备用耦合出清模型[J]. 电力系统自动化,2021, 45(6): 34-42.
|
| [15] |
|
| [16] |
周艳红,张迪,莫智文. 邻域概率粗糙集的不确定性度量[J]. 四川师范大学学报(自然科学版), 2021, 44(1): 136-142.
|
| [17] |
吴晓雪,李艳. 基于邻域关系粗糙集和不确定性的增量属性约简方法[J]. 西北大学学报(自然科学版), 2022, 52(5): 753-764.
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
翟秀云,陈明通. 基于数据驱动的海水环境中3C钢腐蚀速率的预测[J]. 材料保护,2022, 55(10): 50-55.
|
| [22] |
|
| [23] |
苏昕,徐立军,胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报,2022, 43(6): 521-529.
|
/
| 〈 |
|
〉 |