PDF(1920 KB)
PDF(1920 KB)
PDF(1920 KB)
基于改进烟花算法的含风电场电力系统无功优化
Reactive Power Optimization of Power Systems Containing Wind Farms Based on Improved Fireworks Algorithm
针对含风电场电力系统多目标无功优化的应用需求及优化算法存在局部易收敛和全局性搜索能力差的问题,提出一种应用于多目标无功优化的矢量烟花算法。首先,改变烟花算法爆炸方式,并将烟花爆炸的维度进行关联,避免迭代过程中陷入局部最优解,增强算法全局搜索能力;其次,引入新型拥挤度选择策略以加快算法的收敛速度;最后,建立有功网损和电压偏差最小的含风电场电力系统多目标无功优化模型,并以风电场接入IEEE 14节点电力网络为算例进行模型求解。结果表明:所提算法避免了局部易收敛问题,增强了算法全局搜索能力,能在不同优化要求下得到有效的无功优化方案。
In response to the application demand for multi-objective reactive power optimization in power systems containing wind farms and the issues of local easy convergence and poor global search ability of optimization algorithms, a vector fireworks algorithm is proposed for multi-objective reactive power optimization. Firstly, the explosion method of the fireworks algorithm is modified, and the dimensions of the fireworks explosion are correlated to avoid falling into a local optimal solution during the iteration process and to enhance the global search capability of the algorithm. Secondly, a novel congestion selection strategy is introduced to accelerate the convergence speed of the algorithm. Lastly, a multi-objective reactive power optimization model for power systems containing wind farms is established, with the objectives of minimizing active network loss and voltage deviation. The model is solved as an example of an IEEE 14-node power network with a wind farm. The results indicate that the proposed algorithm mitigates the issue of local convergence, enhances the global search capability of the algorithm, and can obtain effective reactive power optimization solutions under different optimization requirements.
wind farm / multi-objective optimization / fireworks algorithm / reactive power optimization
| [1] |
|
| [2] |
张 磊,向紫藤,余朋军,等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力,2021, 49(10): 75-82.
|
| [3] |
郭凯,张秀琦,曹斌,等. 海上风力发电可靠性影响因素分析及提升方法[J]. 内蒙古电力技术,2022, 40(5): 16-21.
|
| [4] |
黄树帮,陈耀,金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术,2021, 42(1): 60-68.
|
| [5] |
李建林,李光辉,梁丹曦,等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源,2021, 6(5): 1-9.
|
| [6] |
|
| [7] |
|
| [8] |
倪爽,崔承刚,杨宁,等. 基于深度强化学习的配电网多时间尺度在线无功优化[J]. 电力系统自动化,2021, 45(10): 77-85.
|
| [9] |
付英杰,汪沨,谭阳红. 基于Pareto最优解的含分布式电源配电网无功优化[J]. 电力系统及其自动化学报,2017, 29(1): 18-23.
|
| [10] |
|
| [11] |
李澎,彭敏放. 基于改进遗传算法的含风电场电力系统无功优化[J]. 现代电子技术,2020, 43(13): 167-171.
|
| [12] |
鲁改凤,欧钰雷,杜帅,等. 基于改进HPSO算法的风电场内部无功优化研究[J]. 电测与仪表,2020, 57(10): 36-42.
|
| [13] |
江泽昌,刘天羽,江秀臣,等. 考虑DG与负荷不确定性的主动配电网重构[J]. 电测与仪表,2019, 56(19): 76-84.
|
| [14] |
彭博,邹乐,李昕,等. 基于改进烟花算法的配电网优化重构[J]. 应用科技,2023, 50(4): 84-89.
|
| [15] |
杨茂,杨琼琼. 风电机组风速-功率特性曲线建模研究综述[J]. 电力自动化设备,2018, 38(2): 34-43.
|
| [16] |
杨莹. 含双馈风机的配电网多场景无功优化研究[D]. 沈阳:沈阳农业大学,2019.
|
| [17] |
|
| [18] |
|
| [19] |
曹善康,魏繁荣,林湘宁,等. 网侧电压跌落下计及无功支撑效能的直流微电网多目标优化策略[J]. 中国电机工程学报,2023, 43(15): 5759-5772.
|
/
| 〈 |
|
〉 |