基于GRU-DAE-DLinear的风电低出力事件并行预测方法

许源

分布式能源 ›› 2025, Vol. 10 ›› Issue (4) : 64-72.

PDF(2689 KB)
PDF(2689 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (4) : 64-72. DOI: 10.16513/j.2096-2185.DE.24090647

基于GRU-DAE-DLinear的风电低出力事件并行预测方法

作者信息 +

Parallel Prediction Method for Wind Power Low-Output Events Based on GRU-DAE-DLinear

Author information +
文章历史 +

摘要

准确预测风电低出力是保障高比例新能源电力系统供电安全的关键。为此,提出了一种基于门控循环单元-降噪自编码器(gate recurrent unit -denoising auto encoder,GRU-DAE)-DLinear的风电低出力并行预测方法,采用无监督学习方法刻画低出力典型波动特性,并通过针对性建模提升预测准确性。首先,提出了基于GRU-DAE的低出力事件分类方法,利用时序神经网络的序列数据降噪归纳和重构能力辨识典型低出力事件。然后,建立了基于DLinear的低出力事件并行预测模型,对不同类型低出力的时序特性独立建模,从而提升整体预测准确性。最后,基于中国北方某风电场的实际运行数据验证了所提方法的有效性。

Abstract

Accurately predicting the low output of wind power is the key to ensuring the power supply security of a high-proportion new energy power system. To this end, a parallel prediction method for wind power low output based on gate recurrent unit -denoising auto encoder(GRU-DAE)-DLinear is proposed. The unsupervised learning method is adopted to characterize the typical fluctuation characteristics of low output, and the prediction accuracy is improved through targeted modeling. Firstly, a low-output event classification method based on GRU-DAE is proposed, and the sequential data denoising, induction and reconstruction capabilities of temporal neural networks are utilized to identify typical low-output events. Then, a parallel prediction model for low-output events based on DLinear is established, independently modeling the timing characteristics of different types of low-output events, thereby improving the overall prediction accuracy. Finally, the effectiveness of the proposed method is verified based on the actual operation data of a wind farm in northern China.

关键词

风力发电 / 功率预测 / 低出力事件 / 聚类算法 / 并行预测

Key words

wind power generation / power prediction / low-output event / clustering algorithm / parallel prediction

引用本文

导出引用
许源. 基于GRU-DAE-DLinear的风电低出力事件并行预测方法[J]. 分布式能源. 2025, 10(4): 64-72 https://doi.org/10.16513/j.2096-2185.DE.24090647
XU Yuan. Parallel Prediction Method for Wind Power Low-Output Events Based on GRU-DAE-DLinear[J]. Distributed Energy Resources. 2025, 10(4): 64-72 https://doi.org/10.16513/j.2096-2185.DE.24090647
中图分类号: TK81   

参考文献

[1]
张凡, 景天, 毛生海, 等. 大型新能源基地汇集工程合理送出需求研究[J]. 分布式能源, 2024, 9(4): 69-77.
ZHANG Fan, JING Tian, MAO Shenghai, et al. Research on reasonable send out demand of collection engineering for large-scale new energy bases[J]. Distributed Energy, 2024, 9(4): 69-77.
[2]
孙景博, 王阳, 杨晓帆, 等. 中国风光资源气候风险时空变化特征分析[J]. 中国电力, 2023, 56(5): 1-10.
SUN Jingbo, WANG Yang, YANG Xiaofan, et al. Analysis of spatial and temporal variation character of climate risks of wind and solar resources in China[J]. Electric Power, 2023, 56(5): 1-10.
[3]
阎洁, 张永蕊, 张浩. 区域风电场群集中式功率预测系统设计与应用[J]. 分布式能源, 2022, 7(1): 28-36.
YAN Jie, ZHANG Yongrui, ZHANG Hao. Design and application of centralized power forecasting system for regional wind farm cluster[J]. Distributed Energy, 2022, 7(1): 28-36.
[4]
YIN H, OU Z, FU J, et al. A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture[J]. Energy, 2021, 234: 121271.
[5]
HAN L, ZHANG R, WANG X, et al. Multi-step wind power forecast based on VMD-LSTM[J]. IET Renewable Power Generation, 2019, 13(10): 1690-1700.
To improve the accuracy of multi-step wind power forecast, a variational mode decomposition-long short-term memory (VMD-LSTM) forecast method is proposed. Firstly, the variational mode decomposition method is adopted to decompose the wind power data into three constituent modes, named as the long-term component, the fluctuation component and the random component. Secondly, long short-term memory network is utilised to deeply learn the characteristics of the three constituent modes. Profit from its unique forget gate and memory gate structure, the association with long-term time series is learned to build a multi-step forecast model. Finally, the wind power data from ELIA and NERL are used to test. The error analysis shows that the proposed method has superior performance in the multi-step forecast and real-time forecast.
[6]
骆钊, 吴谕侯, 朱家祥, 等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J]. 电网技术, 2023, 47(9): 3527-3537.
LUO Zhao, WU Yuhou, ZHU Jiaxiang, et al. Wind power forecasting based on multi-scale time series block auto-encoder transformer neural network model[J]. Power System Technology, 2023, 47(9): 3527-3537.
[7]
任鑫, 王一妹, 王华, 等. 基于改进卷积-门控网络及Informer的两类中长期风电功率预测方法[J/OL]. 现代电力,1-9[2024-10-02].https://doi.org/10.19725/j.cnki.1007-2322.2023.0159.
REN Xin, WANG Yimei, WANG Hua, et al. Two types of medium-long-term wind power forecasting methods based on improved CNN-GRU and informer[J/OL]. Modern Electric Power,1-9[2024-10-02]. https://doi.org/10.19725/j.cnki.1007-2322.2023.0159.
[8]
WU H, MENG K, FAN D, et al. Multistep short-term wind speed forecasting using transformer[J]. Energy, 2022, 261: 125231.
[9]
李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法[J]. 电网技术, 2024, 48(4): 1466-1480.
LI Lianbing, GAO Guoqiang, WU Weiqiang, et al. Short-term day-ahead wind power prediction considering feature recombination and improved transformer[J]. Power System Technology, 2024, 48(4): 1466-1480.
[10]
YAN J, ZHANG H, LIU Y, et al. Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3276-3284.
[11]
LI Y, WANG H, YAN J, et al. Ultra-short-term wind power forecasting based on the strategy of “dynamic matching and online modeling”[J]. IEEE Transactions on Sustainable Energy, 2025, 16(1): 107-123.
[12]
CHEN H. Cluster-based ensemble learning for wind power modeling from meteorological wind data[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112652.
[13]
阎洁, 许成志, 刘永前, 等. 基于风速云模型相似日的短期风电功率预测方法[J]. 电力系统自动化, 2018, 42(6): 53-59.
YAN Jie, XU Chengzhi, LIU Yongqian, et al. Short-term wind power prediction method based on wind speed cloud model in similar day[J]. Automation of Electric Power Systems, 2018, 42(6): 53-59.
[14]
LIN Y, YANG M, WAN C, et al. A multi-model combination approach for probabilistic wind power forecasting[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 226-237.
[15]
YANG M, WANG D, XU C, et al. Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting[J]. Renewable Energy, 2023, 211: 582-594.
[16]
AL-DUAIS F S, AL-SHARPI R S. A unique Markov chain Monte Carlo method for forecasting wind power utilizing time series model[J]. Alexandria Engineering Journal, 2023, 74: 51-63.
[17]
刘雅婷, 杨明, 于一潇, 等. 基于多场景敏感气象因子优选及小样本学习与扩充的转折性天气日前风电功率预测[J]. 高电压技术, 2023, 49(7): 2972-2982.
LIU Yating, YANG Ming, YU Yixiao, et al. Transitional-weather-considered day-ahead wind power forecasting based on multi-scene sensitive meteorological factor optimization and few-shot learning[J]. High Voltage Engineering, 2023, 49(7): 2972-2982.
[18]
LU P, YE L, ZHAO Y, et al. Feature extraction of meteorological factors for wind power prediction based on variable weight combined method[J]. Renewable Energy, 2021, 179: 1925-1939.
[19]
LIM H, KIM Y, CHEUN K. An efficient sliding window algorithm using adaptive-length guard window for turbo decoders[J]. Journal of Communications and Networks, 2012, 14(2): 195-198.
[20]
OHLENDORF N, SCHILL W P. Frequency and duration of low-wind-power events in Germany[J]. Environmental Research Letters, 2020, 15(8): 084045.
[21]
POTISOMPORN P, ADCOCK T A A, VOGEL C R. Evaluating ERA5 reanalysis predictions of low wind speed events around the UK[J]. Energy Reports, 2023, 10: 4781-4790.
[22]
PATLAKAS P, GALANIS G, DIAMANTIS D, et al. Low wind speed events: Persistence and frequency[J]. Wind Energy, 2017, 20(6): 1033-1047.
[23]
LIU S, HAN S, SONG W, et al. Multi-dimensional wind power low-power event identification based on variational mode decomposition[C]//2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2). Hangzhou, China: IEEE, 2023: 3342-3346.
[24]
XIONG Y, PENG X, ZHOU C, et al. A definition and prediction method for wind power low output events[C]//2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Chongqing, China: IEEE, 2023: 2335-2340.
[25]
LIU S, WANG H, SONG W, et al. A novel prediction method for low wind output processes under very few samples based on improved W-DCGAN[J]. IET Renewable Power Generation, 2024, 18(14): 2294-2304.
[26]
XIAO Y, ZOU C, CHI H, et al. Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis[J]. Energy, 2023, 267: 126503.
[27]
陈烨烨, 李瑶, 李捍东. 基于VMD-PE-MulitiBiLSTM的超短期风电功率预测[J]. 分布式能源, 2024, 9(2): 1-7.
CHEN Yeye, LI Yao, LI Handong. Ultra-short-term prediction of wind power based on VMD-PE-MulitiBiLSTM[J]. Distributed Energy, 2024, 9(2): 1-7.
[28]
刘金朋, 邓嘉明, 高鹏宇, 等. 基于VMD-IMPA-SVM的超短期风电功率预测[J]. 智慧电力, 2024, 52(7):24-31,79.
LIU Jinpeng, DENG Jiaming, GAO Pengyu, et al. Ultra short term wind power prediction based on VMD-IMPA-SVM[J]. Smart Power, 2024, 52(7):24-31,79.
[29]
封钰, 宋佑斌, 金晟, 等. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术, 2023, 44(6):889-895.
摘要
精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deep learning,DL)短期负荷预测模型(RF-DL-RST)。该模型首先基于历史数据,利用随机森林算法提取影响负荷预测的关键特征量;然后将关键特征量和历史负荷值作为深度神经网络的输入、输出项进行训练,并通过粗糙集理论修正预测结果。最后,通过算例进行仿真验证,结果表明,该模型的预测准确度比单一的深度学习模型及不进行预测修正的模型更高。
FENG Yu, SONG Youbin, JIN Sheng, et al. Improved deep learning model for forecasting short-term load based on random forest algorithm and rough set theory[J]. Power Generation Technology, 2023, 44(6):889-895.

Accurate power load forecasting is conducive to ensuring the safe and economic operation of the power system. Aiming at the problems of low prediction accuracy and long time consuming of the current prediction algorithms, an improved deep learning (DL) short-term load forecasting model based on random forest (RF) algorithm and rough set theory (RST), namely RF-DL-RST, was proposed. Firstly, based on historical data, the model used RF algorithm to extract the key features that affected the load forecasting. Then, the key features and historical load data were trained as the input and output items of deep neural network (DNN), and the prediction results were corrected by RST. After that, the rough set method was used to revise the prediction results. Finally, the simulation was verified by an example. The results show that the prediction accuracy of the model is higher than that of a single DNN model and a model without RST revised.

[30]
刘洋, 伍双喜, 朱誉, 等. 基于CEEMDAN和DBO-GRNN的风电功率超短期预测[J]. 电力建设, 2024, 45(8): 97-105.
摘要
针对风电数据波动性过大而导致的风电功率预测不精确问题,提出一种基于自适应噪声完备集合经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与蜣螂算法(dung beetle optimizer,DBO)优化的广义回归神经网络(generalized regression neural network,GRNN)超短期风电功率预测方法。首先将原始风功率序列进行时滞特性分析,选取与预测时刻相关性强的时序进行多路时序建模;然后对相关性强的时序进行CEEMDAN分解,得到一组本征模态分量(intrinsic mode function,IMF)和剩余分量;其次将上述两组分量输入经蜣螂优化算法优化的GRNN网络进行各分量预测;然后将各预测分量叠加,得到最终预测结果。算例分析表明,所提的CEEMDAN-DBO-GRNN预测模型的预测精度更高,而且CEEMDAN能够减少风电功率波动性与随机性对预测结果的影响,同时利用蜣螂算法优化后的超参数模型进行预测,在一定程度上提高了超短期风电功率预测的精度。
LIU Yang, WU Shuangxi, ZHU Yu, et al. Ultra-short-term prediction of wind power based on CEEMDAN and DBO-GRNN[J]. Electric Power Construction, 2024, 45(8): 97-105.
To address the problem of inaccurate wind power prediction caused by the excessive volatility of wind power data, this paper proposes a generalized regression neural network (GRNN) method based on the optimization of complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and dung beetle optimizer (DBO). A combination of GRNN and DBO optimization is used for ultra-short-term wind power prediction. First, the original wind power sequence is subjected to time-lag characteristic analysis, and the time series with a strong correlation with the predicted moments is selected for multiplexed time-series modeling. Subsequently, the time series with strong time series are subjected to CEEMDAN decomposition, and a set of intrinsic mode functions (IMFs) and a residual term are obtained. Second, the two sets of the above components are inputted into the GRNN network optimized by the DBO algorithm for the prediction of the components. Subsequently, the prediction components are superimposed to obtain the final prediction result. Example analysis shows that the CEEMDAN-DBO-GRNN prediction model proposed in this paper has higher prediction accuracy, and CEEMDAN can reduce the influence of wind power volatility and randomness on the prediction results. The prediction of the hyperparameter model optimized by the DBO algorithm improves the accuracy of the ultra-short-term wind power prediction to a certain extent.
[31]
邓韦斯, 卢斯煜, 刘显茁, 等. 基于相空间重构和BiLSTM的风电功率短期预测[J]. 广东电力, 2023, 36(7):22-30.
DENG Weisi, LU Siyu, LIU Xianzhuo, et al. Short-term forecasting of wind power based on phase space reconstruction and BiLSTM[J]. Guangdong Electric Power, 2023, 36(7): 22-30.
[32]
路宽, 曲建璋, 高嵩, 等. 基于变分推断的超短期风电功率预测[J]. 山东电力技术, 2023, 50(4):13-21.
LU Kuan, QU Jianzhang, GAO Song, et al. Ultra-short-term wind power prediction based on variational inference[J]. Shandong Electric Power, 2023, 50(4):13-21.

基金

大唐青海能源开发有限公司科技项目(2023002)

PDF(2689 KB)

Accesses

Citation

Detail

段落导航
相关文章

/