基于边缘计算的梯级双时间尺度电热系统最优调度

李二超, 廖敏瑞

分布式能源 ›› 2025, Vol. 10 ›› Issue (3) : 1-10.

PDF(3700 KB)
PDF(3700 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (3) : 1-10. DOI: 10.16513/j.2096-2185.DE.24090651
学术研究

基于边缘计算的梯级双时间尺度电热系统最优调度

作者信息 +

Optimal Scheduling of Tiered Dual-Time-Scale Electric-Thermal System Based on Edge Computing

Author information +
文章历史 +

摘要

针对多园区电热系统在可再生能源大规模接入场景下存在的调度灵活性不足与运行成本攀升问题,提出一种基于边缘计算的梯级双时间尺度分布式电热系统最优调度模型。首先,构建包含物理设备层、边缘计算层与云层的三层协同架构,通过边缘计算实现园区间数据快速处理与分布式决策;然后,在改进目标级联法中引入双时间尺度策略,下层以5 min为尺度优化电能交互,上层以1 h为尺度协调热能交互,并采用增广拉格朗日法实现多时间尺度问题的解耦与滚动优化;最后,设计基于能源贡献度的收益再分配机制,通过非对称映射函数量化各园区在电热交易及可再生能源消纳中的贡献,确保利益公平分配。算例分析表明,所提模型较传统方法综合运行成本降低34.46%,可再生能源消纳率显著提升,且算法在8次迭代内收敛,验证了边缘计算与双时间尺度策略的结合可有效应对能流时空特性差异,为多能源耦合系统的协同优化提供理论支撑与实践参考。

Abstract

Aiming at the challenges of insufficient scheduling flexibility and rising operational costs in multi-park electric-thermal systems under large-scale renewable energy integration,this paper proposes an optimal scheduling model for tiered dual-time-scale distributed electric-thermal system based on edge computing. Firstly,a three-tier collaborative architecture comprising a physical equipment layer,edge computing layer,and cloud layer is constructed. Edge computing facilitates rapid data processing and distributed decision-making among parks. Secondly,the improved analytical target cascading method is employed with a dual-time-scale strategy: the lower layer optimizes electrical energy interactions at a 5 min granularity,while the upper layer coordinates thermal energy interactions at a 1 h granularity. The augmented Lagrangian method is integrated to decouple and iteratively solve multi-time-scale optimization problems. Finally,a benefit redistribution mechanism based on energy contribution degrees is designed,utilizing an asymmetric mapping function to quantify each park’s contributions to electric-thermal exchanges and renewable energy consumption,ensuring equitable profit distribution. Case studies demonstrate that the proposed model reduces comprehensive operational costs by 34.46% compared to conventional methods,significantly improves renewable energy consumption rates,and achieves convergence within eight iterations. The findings confirm that the integration of edge computing and dual-time-scale strategies effectively addresses spatiotemporal disparities in energy flows,providing theoretical and practical insights for coordinated optimization in multi-energy-coupled systems.

关键词

边缘计算 / 双时间尺度 / 分布式电热系统 / 改进目标级联法 / 收益再分配 / 可再生能源消纳

Key words

edge computing / dual-time-scale / distributed electric-thermal system / improved analytical target cascading method / benefit redistribution / renewable energy consumption

引用本文

导出引用
李二超, 廖敏瑞. 基于边缘计算的梯级双时间尺度电热系统最优调度[J]. 分布式能源. 2025, 10(3): 1-10 https://doi.org/10.16513/j.2096-2185.DE.24090651
Erchao LI, Minrui LIAO. Optimal Scheduling of Tiered Dual-Time-Scale Electric-Thermal System Based on Edge Computing[J]. Distributed Energy Resources. 2025, 10(3): 1-10 https://doi.org/10.16513/j.2096-2185.DE.24090651
中图分类号: TK01;TM73   

参考文献

[1]
XU S, LIAO B, YANG C, et al. Deep reinforcement learning assisted edge-terminal collaborative offloading algo-rithm of blockchain computing tasks for energy Internet[J]. International Journal of Electrical Power & Energy Systems, 2021, 131: 107022.
[2]
MUNIR M S, ABEDIN S F, TRAN N H, et al. Risk-aware energy scheduling for edge computing with microgrid: A multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Network and Service Management, 2021, 18: 3476-3497.
[3]
TIAN N, GUO Q, SUN H. Privacy preservation method for MIQP-based energy management problem: A cloud-edge framework[J]. Electric Power Systems Research, 2021, 190: 106850.
[4]
ARUNAN A, SIROJAN T, RAVISHANKAR J, et al. Real-time adaptive differential feature-based protection scheme for isolated microgrids using edge computing[J]. IEEE Systems Journal, 2021, 15(2): 1318-1328.
[5]
WANG S, WANG X, WU W. Cloud computing and local chip-based dynamic economic dispatch for microgrids[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3774-3784.
[6]
DONG W, YANG Q, LI W, et al. Machine-learning-based real-time economic dispatch in islanding microgrids in a cloud-edge computing environment[J]. IEEE Internet of Things Journal, 2021, 8(16): 13703-13711.
[7]
LI W, YANG T, DELICATO F C, et al. On enabling sustainable edge computing with renewable energy resources[J]. IEEE Communications Magazine, 2018, 56(5): 94-101.
[8]
汪强, 温东旭, 吕磊, 等. 基于边缘计算的输电线路在线监测通信组网技术研究[J]. 山东电力技术, 2023, 50(1):20-26.
WANG Qiang, WEN Dongxu, LYU Lei, et al. Research on transmission line online monitoring communication net working technology based on edge computing[J]. Shandong Electric Power, 2023, 50(1):20-26.
[9]
秦强, 刘文泽, 谭炜豪, 等. 面向软件定义网络的配电边缘计算终端优化部署方法[J]. 电力建设, 2023, 44(1): 82-90.
摘要
为增强配用电物联网的业务支撑能力以及节省经济成本,提出了一种面向软件定义网络(software defined network, SDN)的配电边缘计算终端优化部署方法。电力无线专网基站具有丰富的数据流与业务流,利用无线基站站址部署配电边缘计算终端具有显著的优势。首先,介绍了面向软件定义网络的配用电物联网边缘计算架构,建立了配用电物联网的业务、智能终端和边缘计算终端等要素模型。进一步,考虑边缘计算终端、智能终端以及SDN控制器的通信方式约束、边缘计算终端的服务延时和硬件配置约束,以年均设备成本和年均运行成本之和为目标,建立了配电边缘计算终端优化部署模型。最后,基于多场景的算例仿真结果验证了所提方法的有效性。
QIN Qiang, LIU Wenze, TAN Weihao, et al. An optimal deployment method of distribution edge computing terminals for software defined network[J]. Electric Power Construction, 2023, 44(1): 82-90.
<p id="p00010">In order to enhance the business support ability and save economic cost of power distribution internet of things, this paper proposes an optimal deployment method of the distribution edge computing terminals for software defined network (SDN). Base stations of power wireless private network are rich in data flow and service flow. Using the location of wireless base stations to deploy distribution edge computing terminals has significant advantages. This paper introduces the edge computing architecture of power distribution internet of things for software defined network, and establishes the models of business, intelligent terminal and edge computing terminal. Further, considering the communication mode constraints of edge computing terminal, intelligent terminal and SDN controller, and the constraints of service delay and hardware configuration of edge computing terminal, aiming at the sum of annual average equipment cost and annual average operation cost, this paper establishes an optimal deployment model of distribution edge computing terminals. Finally, the effectiveness of the proposed method is verified by the simulation results of a multi-scenario example.</p> <p id="p00015">This work is supported by the Key Research and Development Program of Guangdong Province (No. 2019B111109002).</p>
[10]
慈文斌, 顾海飞, 朱劲松. 多时间尺度电热综合能源系统状态估计研究[J]. 热力发电, 2021, 50(9): 94-100.
CI Wenbin, GU Haifei, ZHU Jinsong. Research on state estimation of multi-time-scale electric-heat integrated energy systems[J]. Thermal Power Generation, 2021, 50(9): 94-100.
[11]
杨德友, 聂新宇. 基于供热网络热惯性的风电消纳能力评估[J]. 电网与清洁能源, 2020, 36(4): 66-71.
YANG Deyou, NIE Xinyu. Evaluation of wind power consumption capacity based on thermal inertia of heating network[J]. Power System and Clean Energy, 2020, 36(4): 66-71.
[12]
WU Yiqian, ZHANG Xuan, SUN Hongbin. A multi-time-scale autonomous energy trading framework within distribution networks based on blockchain[J]. Applied Energy, 2021, 287: 116560.
[13]
杨冬锋, 徐扬, 姜超. 考虑多类型需求响应的电-热联合系统多时间尺度协调调度[J]. 太阳能学报, 2021, 42(10): 282-289.
YANG Dongfeng, XU Yang, JIANG Chao. Multi-time-scale coordinated scheduling of electric-heat integrated systems considering multiple types of demand response[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 282-289.
[14]
牛岚甲, 吴迪, 刘全明, 等. 边缘计算环境中基于区块链的物联网解决方案[J]. 南京理工大学学报, 2023, 47(5): 678-684.
NIU Lanjia, WU Di, LIU Quanming, et al. Blockchain-based IoT solutions in edge computing environments[J]. Journal of Nanjing University of Science and Technology, 2023, 47(5): 678-684.
[15]
MOHSENIAN-RAD A H, LEON-GARCIA A. Energy-information transmission tradeoff in green cloud computing[C]// Proceedings of the IEEE Global Communications Conference. Miami: IEEE, 2010: 1-6.
[16]
余涛, 梁敏航, 罗庆全, 等. 新型电力系统专用传感与边缘智能关键技术及其展望[J]. 高电压技术, 2024, 50(8): 3324-3338.
YU Tao, LIANG Minhang, LUO Qingquan, et al. Key technologies and future perspectives of specialized sensors and edge intelligence in new power systems[J]. High Voltage Engineering, 2024, 50(8): 3324-3338.
[17]
CHENG J, NGUYEN D T, BHARGAVA V K. Resilient edge service placement under demand and node failure uncertainties[J]. IEEE Transactions on Network and Service Management, 2023, 1(1): 558-573.
[18]
ZHANG Z, DU J, FEDOROVICH K S, et al. Optimization strategy for power sharing and low-carbon operation of multi-micro-grid IES based on asymmetric Nash bargaining[J]. Energy Strategy Reviews, 2022, 44: 100981.
[19]
张衡, 张沈习, 程浩忠, 等. Stackelberg博弈在电力市场中的应用研究综述[J]. 电工技术学报, 2022, 37(13): 3250-3262.
ZHANG Heng, ZHANG Shenxi, CHENG Haozhong, et al. A review of the application of Stackelberg game theory in power markets[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3250-3262.
[20]
熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3): 507-516.
XIONG Yufeng, SI Yang, ZHENG Tianwen, et al. Optimization of hydrogen energy storage configuration in industrial park comprehensive energy systems based on master-slave game theory[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 507-516.
[21]
胡亚春, 窦震海, 张志一, 等. 基于分布鲁棒和改进纳什谈判的多微网-共享储能运行优化策略[J]. 电力建设, 2024, 45(7): 100-112.
摘要
促进可再生能源消纳,提高能源效率已成为电力系统的重要发展方向。提出了一种考虑能源出力不确定性及合作贡献差异性的多微网-共享储能系统运行优化策略。基于纳什谈判建立成本优化模型并将其分解为两个子问题,以降低求解难度。子问题P1基于综合范数建立两阶段分布鲁棒优化模型,确定最恶劣情景下整体成本最小化的储能容量配置、交互功率及综合需求响应计划;子问题P2基于改进纳什谈判进行非对称议价完成交易支付,考虑能量贡献大小与荷电状态变化分配合作收益。两个子问题分别采用列与约束生成算法和交替方向乘子法迭代求解。实例结果表明,分布鲁棒优化可以实现经济性与鲁棒性的平衡;基于改进纳什谈判的交易支付能够合理分配合作收益,维护合作积极性。
HU Yachun, DOU Zhenhai, ZHANG Zhiyi, et al. Multi-microgrid and shared energy storage operation optimization strategy based on distributionally robust and improved Nash bargaining[J]. Electric Power Construction, 2024, 45(7): 100-112.

To promote the consumption of renewable energy and improve energy efficiency has become an important development direction of power system. In this paper, an operation optimization strategy of multi-microgrids and shared energy storage system is proposed, which considers the uncertainty of energy output and the difference of cooperative contribution. A cost optimization model based on Nash bargaining is established and decomposed into two sub-problems to reduce the difficulty of solving. Subproblem 1 establishes a two-stage distributionally robust optimization model based on the comprehensive norm to determine the energy storage capacity configuration, interactive power, and integrated demand response plan with minimum overall cost under the worst scenario. Sub-problem 2 performs asymmetric bargaining based on improved Nash bargaining to complete transaction payment and distributes cooperation income based on energy contribution and charge state change. The two subproblems are solved iteratively by column and constraint generation (C&CG) algorithm and alternating direction method of multipliers (ADMM). The results of the example show that the distributionally robust optimization can achieve the balance between economy and robustness. The transaction payment based on the improved Nash bargaining can reasonably distribute the cooperation income and maintain the cooperation enthusiasm.

[22]
KIM H M, MICHELENA N F, PAPALAMBROS P Y, et al. Target cascading in optimal system design[J]. Journal of Mechanical Design, 2003, 125(3): 474-480.
[23]
TOSSERAMS S, ETMAN L F P, PAPALAMBROS P Y, et al. An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers[J]. Structural and Multidisciplinary Optimization, 2006, 31(3): 176-189.
[24]
李鹏, 钟瀚明, 马红伟, 等. 基于深度强化学习的有源配电网多时间尺度源荷储协同优化调控[J]. 电工技术学报, 2025, 40(5): 1487-1502.
LI Peng, ZHONG Hanming, MA Hongwei, et al. Multi-time scale source-load-storage collaborative optimization control of active distribution network based on deep reinforcement learning[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1487-1502.
[25]
曾晔, 加鹤萍, 杨菁, 等. 基于模糊层次分析法-熵权法-逼近理想解排序法的虚拟电厂综合贡献度评估方法[J]. 现代电力, 2024, 41(1): 144-151.
ZENG Ye, JIA Heping, YANG Jing, et al. A comprehensive contribution evaluation method for virtual power plants based on fuzzy analytic hierarchy process, entropy weight method, and TOPSIS[J]. Modern Electric Power, 2024, 41(1): 144-151.
[26]
孙健, 柯德平, 徐箭, 等. 考虑热泵灵活性的含低品位热源区域多能协同优化与收益分配策略[J]. 高电压技术, 2025, 51(1): 158-168.
SUN Jian, KE Deping, XU Jian, et al. Multi-energy collaborative optimization and benefit distribution strategies in low-grade heat source regions considering heat pump flexibility[J]. High Voltage Engineering, 2025, 51(1): 158-168.

基金

国家自然科学基金项目(62063019)
甘肃省自然科学基金重点项目(24JRRA173)
甘肃省优秀博士生项目(24JRRA205)

PDF(3700 KB)

Accesses

Citation

Detail

段落导航
相关文章

/