基于改进蝗虫算法的多能源电力系统调度

王伟健, 刘敏

分布式能源 ›› 2025, Vol. 10 ›› Issue (4) : 92-102.

PDF(2752 KB)
PDF(2752 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (4) : 92-102. DOI: 10.16513/j.2096-2185.DE.24090667

基于改进蝗虫算法的多能源电力系统调度

作者信息 +

Multi-Energy Power System Scheduling Based on Improved Grasshopper Algorithm

Author information +
文章历史 +

摘要

随着电力系统的不断发展和环保意识的提高,可再生能源发电比例在电力系统中不断增长,单一的火力发电机组调度已经变为多能源发电协调调度模式。为解决含储能装置的多能源电力系统调度优化问题,建立了以系统发电成本最低和污染排放最少为目标的风-光-火-储能电池-抽水蓄能的多能源电力系统调度模型;引入了基于迭代次数的自适应策略以优化位置更新系数,通过高斯变异对算法种群进行扰动,并将蚁狮算法中精英策略与蝗虫算法相结合,用改进多目标蝗虫算法对所提调度模型进行求解,对真实算例在Matlab平台进行仿真分析,提出了一种最优多目标电力系统调度方案。通过对测试函数和仿真实例进行仿真分析,验证了改进算法的优越性和所建模型的合理性。

Abstract

With the continuous development of the power system and the increasing awareness of environmental protection, the proportion of renewable energy generation in the power system is constantly increasing, and the scheduling of single thermal power generation units has become a coordinated scheduling mode for multi-energy generation. To solve the scheduling optimization problem of multi-energy power systems with energy storage devices, this paper establishes a multi-energy power system scheduling model of wind-solar-thermal-energy storage battery-pumped storage with the goal of minimizing system generation costs and pollution emissions. This paper introduces an adaptive strategy based on the number of iterations to optimize position update factor. Gaussian mutation is used to perturb the algorithm population, and the elite strategy in the ant lion algorithm is combined with the grasshopper algorithm to solve the proposed scheduling model using an improved multi-objective grasshopper algorithm. Real examples are simulated and analyzed on the Matlab platform, and an optimal multi-objective power system scheduling scheme is proposed. Through simulation analysis of test functions and simulation examples, the superiority of the improved algorithm and the rationality of the established model are verified.

关键词

可再生能源 / 储能装置 / 多能源电力系统调度 / 改进多目标蝗虫算法

Key words

renewable energy / energy storage device / multi-energy power system scheduling / improved multi-objective grasshopper algorithm

引用本文

导出引用
王伟健, 刘敏. 基于改进蝗虫算法的多能源电力系统调度[J]. 分布式能源. 2025, 10(4): 92-102 https://doi.org/10.16513/j.2096-2185.DE.24090667
WANG Weijian, LIU Min. Multi-Energy Power System Scheduling Based on Improved Grasshopper Algorithm[J]. Distributed Energy Resources. 2025, 10(4): 92-102 https://doi.org/10.16513/j.2096-2185.DE.24090667
中图分类号: TK01;TM73   

参考文献

[1]
王佳, 吴任博, 肖健, 等. 新型电力系统能源调度与碳排放计价优化方法研究[J]. 电测与仪表, 2024, 61(10):17-25.
WANG Jia, WU Renbo, XIAO Jian, et al. Research on the optimization method of energy dispatching and carbon emission pricing for novel power system[J]. Electrical Measurement & Instrumentation, 2024, 61(10): 17-25.
[2]
崔茗莉, 冯天天, 刘利利. 双碳目标下区块链与可再生能源的融合发展研究[J]. 智慧电力, 2024, 52(2):17-24.
CUI Mingli, FENG Tiantian, LIU Lili. Integration and development of blockchain and renewable energy under double carbon target[J]. Smart Power, 2024, 52(2):17-24.
[3]
卢有飞, 邹时容, 刘璐豪, 等. 基于知识共享的高比例可再生能源系统发电控制[J]. 高压电器, 2024, 60(10):33-45.
LU Youfei, ZOU Shirong, LIU Luhao, et al. Generation control of high percentage renewable energy systems based on knowledge sharing[J]. High Voltage Apparatus, 2024, 60(10): 33-45.
[4]
和萍, 刘鑫, 宫智杰, 等. 高比例可再生能源电力系统源荷储联合调峰分层优化运行[J]. 电力系统保护与控制, 2024, 52(18):112-122.
HE Ping, LIU Xin, GONG Zhijie, et al. Hierarchical optimization operation model for joint peak-load regulation of source-load-storagein a high proportion of renewable energy power system[J]. Power System Protection and Control, 2024, 52(18): 112-122.
[5]
唐文虎, 聂欣昊, 钱瞳, 等. 面向新型电力系统安全稳定的储能应用技术研究综述与展望[J]. 广东电力, 2024, 37(12):3-15.
TANG Wenhu, NIE Xinhao, QIAN Tong, et al. Review and prospect on application technologies of energy storage for safety and stability of new power system[J]. Guangdong Electric Power, 2024, 37(12):3-15.
[6]
李建林, 康靖悦, 辛迪熙. 新型电力系统储能技术应用研究[J]. 分布式能源, 2024, 9(6): 1-8.
LI Jianlin, KANG Jingyue, XIN Dixi. Application research of new power system energy storage technology[J]. Distributed Energy, 2024, 9(6): 1-8.
[7]
陈逸文, 赵晋斌, 李军舟, 等. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3):296-304.
摘要
随着新能源占比逐渐提高,作为辅助新能源并网的储能技术受到广泛关注。氢储能和燃料电池技术已被我国列为战略性能源技术,并积极应用到市场和企业发展中。电解水制氢可以平抑可再生能源并网带来的波动,帮助电网削峰调频;燃料电池作为提高能源转换率的发电装置,同时具备噪音小、无污染等优势,是消纳可再生能源的有效方式之一。对现有储能技术的发展现状和优势进行对比分析,着重介绍了氢储能系统目前关键技术和研究方向,并对氢储能商业化发展进行展望。
CHEN Yiwen, ZHAO Jinbin, LI Junzhou, et al. Challenges and prospects of hydrogen energy storage under the background of low-carbon transformation of power industry[J]. Power Generation Technology, 2023, 44(3):296-304.

With the gradual increase in the proportion of new energy, energy storage technology, as an auxiliary new energy grid, has attracted wide attention. Hydrogen energy storage and fuel cell technology have been listed as strategic energy technologies in China, and have been actively applied in the market and enterprise development. Hydrogen production from electrolytic water can stabilize the fluctuation caused by the connection of renewable energy to the grid and help the power grid to cut peak and frequency modulation. As a power generation device to improve energy conversion rate, fuel cell has the advantages of low noise and no pollution, it is one of the effective ways to absorb renewable energy. This paper made a comparative analysis of the development status and advantages of the existing energy storage technologies, the key technologies and research directions of hydrogen energy storage system were introduced emphatically, and the commercial development of hydrogen energy storage was prospected.

[8]
HAZRA S, ROY P K. Solar‐wind‐hydro‐thermal scheduling using moth flame optimization[J]. Optimal Control Applications and Methods, 2023, 44(2):391-425.
[9]
XIA S, DING Z, DU T, et al. Multitime scale coordinated scheduling for the combined system of wind power,photovoltaic, thermal generator, hydro pumped storage,and batteries[J]. IEEE Transactions on Industry Applications, 2020, 56(3):2227-2237.
[10]
AN Y, ZHAO Z, WANG S, et al. Coordinative optimization of hydro-photovoltaic-wind-battery complementary power sta-tions[J]. CSEE Journal of Power and Energy Systems, 2020, 6(2):410-418.
[11]
崔明勇, 杨林林, 杨少华, 等. 基于需求侧响应的水风互补微电网容量优化配置[J]. 电工电能新技术, 2022, 41(2):21-34.
摘要
针对微电网内源荷两端匹配性较差的问题,本文以含径流式小水电的水风互补微电网为研究对象,提出了一种考虑需求响应的优化配置方法。在负荷端,构建了一种动态分时电价机制,对峰谷时段进行了动态划分,在引入替代弹性的基础上,以负荷与可再生能源发电差值累计和最小为优化目标,同时考虑用户参与需求响应的满意度,对动态分时电价中的峰谷电价进行寻优,计算需求响应后的负荷;在源端,考虑到水风之间的互补效应,提出了一种互补度评价指标,并在计及需求响应参与的基础上,建立了以年运营收益和水风互补度为目标函数的优化配置模型。采用改进粒子群算法结合目标规划法求解,仿真结果表明,将价格型需求响应应用到微电网优化配置中,能够将源-荷两侧有效结合,提高可再生能源消纳水平,在保证用户利益的同时提高微电网经济性。
CUI Mingyong, YANG Linlin, YANG Shaohua, et al. Optimal configuration of hydro-wind complementary micro-grid considering demand-side response[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2): 21-34.
Aiming at the problem of poor matching between the internal source and load of the micro-grid, this paper takes the hydro-wind complementary micro-grid with run-off small hydro power as the research object, and proposes an optimized configuration method considering the demand side response. At the load end, a dynamic time-of-use electricity price mechanism is constructed, and the peak and valley periods are dynamically divided. Based on the introduction of substitution flexibility, the optimization goal is to minimize the cumulative difference between the load and the renewable energy power generation, and the users satisfaction on the participation of demand response is also considered, the peak and the valley price of the dynamic time-of-use electricity price is optimized, and the load after demand response is calculated. At the source end, considering the complementary effects between water and wind, an evaluation index of complementary effect is proposed, and on the basis of taking the demand response participation into consideration, a model with optimization of annual operating income and water and wind complementary effect as the objective function is established. The improved particle swarm algorithm combined with the goal programming method is used to solve the problem. The simulation results show that the application of price-based demand response to the optimal configuration of micro-grids can effectively combine the source and load sides, improve the level of renewable energy consumption, and ensure the interests of users. At the same time, the economic value of the micro grid will be improved.
[12]
SALKUTI S R. Day-ahead thermal and renewable power generation scheduling considering uncertainty[J]. Renewable Energy, 2019,131: 956-965.
[13]
包文俊, 葛敏, 袁毅, 等. 计及需求响应的风光储独立微电网技术经济优化[J]. 太阳能学报, 2024, 45(5):343-350.
BAO Wenjun, GE Min, YUAN Yi, et al. Techno-economic optimization of wind/photovoltaic/storage independent micro-grid considering demand response[J]. Acta Energiae Solaris Sinica, 2024, 45(5): 343-350.
[14]
GUAN H, FENG Y H, YANG X G, et al. Optimization strategy of combined thermal-storage-photovoltaic economic operation considering deep peak load regulation demand[J]. Energy Reports, 2022, 8: 112-120.
[15]
贺建波, 胡志坚, 刘宇凯. 大规模多目标水-火-风协调优化调度模型的建立及求解[J]. 电力系统保护与控制, 2015, 43(6):1-7.
HE Jianbo, HU Zhijian, LIU Yukai. Establishment and solution of the large-scale multi-objective hydro-thermal-wind powercoordination optimization dispatching model[J]. Power System Protection and Control, 2015, 43(6):1-7.
[16]
冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6):745-753.
FENG Qian, LI Qing, QUAN Wei, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753.
[17]
MIRJALILI S Z, MIRJALILI S, SAREMI S, et al. Grasshopper optimization algorithm for multi-objective optimi-zation problems[J]. Applied Intelligence, 2018, 48(4): 805-820.
[18]
MIRJALILI S, JANGIR P, SAREMI S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems[J]. Applied Intelligence, 2017, 46(1):79-95.
[19]
王欣, 谭永怡, 秦斌. 改进MOGOA及其在风储容量优化配置中的应用[J]. 电力科学与技术学报, 2024, 39(2):159-169.
WANG Xin, TAN Yongyi, QIN Bin. Improved multi-objective grasshopper algorithm applied in optimal capacity allocation of energy storage system in wind farms[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 159-169.
[20]
王博, 刘连生, 韩绍程, 等. 基于多策略融合的混合多目标蝗虫优化算法[J]. 计算机应用, 2020, 40(9):2670-2676.
摘要
为提高蝗虫优化算法(GOA)求解多目标问题的性能,提出一种基于多策略融合的混合多目标蝗虫优化算法(HMOGOA)。首先,利用Halton序列建立初始种群,保证种群在初始阶段具有均匀分布和较高多样性;然后,通过差分变异算子引导种群变异,促进种群向优势个体移动同时进行更大范围寻优;最后,利用自适应权重因子根据种群优化情况动态调整算法全局搜索和局部寻优能力,提高优化效率及解集质量。选取7个典型函数进行实验测试,并将HMOGOA与多目标蝗虫优化、多目标粒子群(MOPSO)、基于分解的多目标进化(MOEA/D)及非支配排序遗传算法(NSGA Ⅱ)对比分析。实验结果表明,该算法避免了其他四种算法的局部最优问题,明显提高了解集分布均匀性和分布广度,具有更好的收敛精度和稳定性。
WANG Bo, LIU Liansheng, HAN Shaocheng, et al. Hybrid multi-objective grasshopper optimization algorithm based on fusion of multiple strategies[J]. Journal of Computer Appli-cations, 2020, 40(9): 2670-2676.
[21]
邵鸿南, 梁倩, 王李森, 等. 基于反向学习和种群引导的多目标蝗虫优化算法[J]. 计算机工程与科学, 2021, 43(5):944-950.
SHAO Hongnan, LIANG Qian, WANG Lisen, et al. A multi-objective grasshopper optimization algorithm based on opposition-based learning and population guidance[J]. Computer Engineering & Science, 2021, 43(5): 944-950.
[22]
WANG G, HEIDARI A A, WANG M, et al. Chaotic arc adaptive grasshopper optimization[J]. IEEE Access, 2021,9:17672-17706.
[23]
EWEES A A, ELAZIZ M A, HOUSSEIN E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications, 2018,112:156-172.
[24]
LUO J, CHEN H, XU Y, et al. An improved grasshopper optimization algorithm with application to financial stress prediction[J]. Applied Mathematical Modelling, 2018,64:654-668.
[25]
郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4):930-946.
摘要
蜣螂优化算法(DBO)是近年提出的智能优化算法,与其他优化算法一样,DBO也存在收敛精度低、易陷入局部最优等缺点。针对DBO的这些局限性,提出一种多策略改进的蜣螂优化算法(MIDBO)。首先,改进雏球和偷窃蜣螂对局部最优解和全局最优解的接受程度,使其根据自身搜索能力动态变化,既提升了种群质量又保持了适应度高的个体的良好搜索能力;其次,融合麻雀搜索算法中的追随者位置更新机制对算法进行扰动,并用贪婪策略更新位置,提升了算法的收敛精度;最后,当算法陷入停滞时引入柯西高斯变异策略,提高了算法跳出局部最优解的能力。仿真实验基于20个基准测试函数和CEC2019测试函数,验证了3种改进策略的有效性,将所改进算法和对比算法的优化结果进行收敛性分析和Wilcoxon秩和检验,证明了MIDBO具有良好的寻优性能和鲁棒性。将MIDBO运用在汽车碰撞优化问题的求解上,进一步验证了MIDBO在求解实际工程问题中的有效性和可靠性。
GUO Qin, ZHENG Qiaoxian. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18 (4): 930-946.
[26]
MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015,83:80-98.
[27]
夏爱明, 伍雪冬. 基于改进多目标海樽群算法的电力系统优化调度[J]. 电测与仪表, 2023, 60(7):77-82.
XIA Aiming, WU Xuedong. A improved multi-objective salp swarm algorithm for optimization dispatch of power system[J]. Electrical Measurement & Instrumentation, 2023, 60(7): 77-82.
[28]
SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: Theory and application[J]. Advances in Engineering Software, 2017,105:30-47.
[29]
LIU Y, WANG Z, XU Z, et al. Ant lion-based random walk differential evolution algorithm for optimization and clustering[C]//11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou:IEEE,2019:62-66.
[30]
KHODADADI N, GHAREHCHOPOGH F S, MIRJALILI S. MOAVOA: A new multi-objective artificial vultures optimization algorithm[J]. Neural Computing & Applications, 2022, 34(23):20791-20829.
[31]
彭俊澄, 张薇. 基于GA-BP神经网络的多无人机协同目标定位[J]. 应用科技, 2024, 51(3):141-149.
PENG Juncheng, ZHANG Wei. Multi UAVs cooperative target localization basedon GA-BP neural network[J]. Applied Science and Technology, 2024, 51(3): 141-149.
[32]
宋宜祥, 张晓波, 黄达. 基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测[J]. 地质科技通报, 2022, 41(2):130-138.
SONG Yixiang, ZHANG Xiaobo, HUANG Da. Stability prediction of landslide dams based on SSA-Adam-BP neural network model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 130-138.
[33]
史红伟, 叶明昊, 谢酶, 等. 基于改进鲸鱼算法优化LSTM的粮油温度预测[J]. 陕西科技大学学报, 2024, 42(6):208-214.
SHI Hongwei, YE Minghao, XIE Mei, et al. Grain and oil temperature prediction based on improved whale algorithm optimized LSTM[J]. Journal of Shaanxi University of Science & Technology, 2024, 42(6): 208-214.

基金

贵州省科技计划项目(黔科合支撑[2021]一般409)

PDF(2752 KB)

Accesses

Citation

Detail

段落导航
相关文章

/