高空风力发电关键技术、现状及发展趋势

韩爽,刘杉

分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 1-9.

PDF(5729 KB)
PDF(5729 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 1-9. DOI: 10.16513/j.2096-2185.DE.2409101
学术研究

高空风力发电关键技术、现状及发展趋势

作者信息 +

Key Technologies, Current Status and Development Trends of High-Altitude Wind Power Generation

Author information +
文章历史 +

摘要

高空风能是一种储量丰富、分布广泛的清洁能源。高空风力发电系统是通过系留航空器装置将高空风能转换成电能。与传统风力发电相比,高空风力发电具有发电效率高、稳定性强以及选址受限少等优点。然而,高空风力发电稳定控制技术难以突破以及制造材料难以获得等问题也制约了高空风力发电的发展。结合目前高空风力发电的实际发展情况,针对高空风力发电系统类型、关键技术、发展现状、存在问题和发展趋势进行了总结和提炼。首先,围绕高空风力发电系统设计,介绍了3种高空风力发电系统设计技术,并阐述了各自优缺点;然后,提出了高空风力发电系统中的3项关键技术,并对其进行了详细论述。最后,对高空风力发电技术发展与应用的研究方向及发展前景展开探讨,旨在为高空风力发电未来研究提供借鉴和思考。

Abstract

High altitude wind energy is a clean energy source with abundant reserves and wide distribution. High altitude wind power systems are used to convert high altitude wind energy into electrical energy by means of a tethered aircraft device. Compared with traditional wind power generation, high-altitude wind power generation has the advantages of high-power generation efficiency, strong stability, and fewer restrictions on site selection. However, problems such as the difficulty of breaking through the stabilization and control technology of high-altitude wind power generation and the difficulty of obtaining manufacturing materials have also constrained the development of high-altitude wind power generation. Combined with the current actual development of high-altitude wind power generation, it summarizes and refines the types of high-altitude wind power generation systems, key technologies, development status, problems, and development trends. Firstly, around the design of high-altitude wind power generation system, three kinds of high-altitude wind power generation system design technologies are introduced and their respective advantages and disadvantages are elaborated; then, three key technologies in the high-altitude wind power generation system are proposed and discussed in detail. Finally, the research direction and development prospect of the development and application of high-altitude wind power generation technology are discussed, aiming to provide reference, and thinking for the future research of high-altitude wind power generation.

关键词

高空风能 / 高空风力发电 / 系留风筝 / 系留飞行器 / 系留浮空器

Key words

high-altitude wind energy / high-altitude wind power / tethered kites / tethered aircraft / tethered floatplane

引用本文

导出引用
韩爽, 刘杉. 高空风力发电关键技术、现状及发展趋势[J]. 分布式能源. 2024, 9(1): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2409101
Shuang HAN, Shan LIU. Key Technologies, Current Status and Development Trends of High-Altitude Wind Power Generation[J]. Distributed Energy Resources. 2024, 9(1): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2409101
中图分类号: TK89   

参考文献

[1]
薛桁,朱瑞兆,杨振斌,等. 中国风能资源贮量估算[J]. 太阳能学报2001, 22(2): 167-170.
XUE Hang, ZHU Ruizhao, YANG Zhenbin, et al. Estimation of wind energy resource storage in China[J]. Acta Energiae Solaris Sinica, 2001, 22(2) : 167-170.
[2]
郑崇伟,潘静. 全球海域风能资源评估及等级区划[J]. 自然资源学报2012, 27(3): 364-371.
ZHENG Chongwei, PAN Jing. Wind energy resources assessment in global ocean[J]. Journal of Natural Resources, 2012, 27(3): 364-371.
[3]
阎洁,张永蕊,张浩. 区域风电场群集中式功率预测系统设计与应用[J]. 分布式能源2022, 7(1): 28-36.
YAN Jie, ZHANG Yongrui, ZHANG Hao. Design and application of centralized power forecasting system for regional wind farm cluster[J]. Distributed Energy, 2022, 7(1): 28-36.
[4]
雷旭,马鹏飞,宋智帅,等. 计及风电预测误差的柔性负荷日内调度模型[J]. 发电技术2022, 43(3): 485-491.
LEI Xu, MA Pengfei, SONG Zhishuai, et al. A flexible intraday load dispatch model considering wind power prediction errors[J]. Power Generation Technology, 2022, 43(3): 485-491.
[5]
郑婷婷,单小雨,马继涛,等. 寒潮天气对风电运行和功率预测的影响分析[J]. 内蒙古电力技术2023, 41(4): 8-12.
ZHENG Tingting, SHAN Xiaoyu, MA Jitao, et al. Impact of cold wave weather on wind power operation and power prediction[J]. Inner Mongolia Electric Power, 2023, 41(4): 8-12.
[6]
俞增盛,吴俊. 高空风力发电技术与产业前景综述[J]. 上海节能2017(7): 379-382.
YU Zengsheng, WU Jun. Overview of high attitude wind power generation technology and industry prospect[J]. Shanghai Energy Conversion, 2017(7): 379-382.
[7]
廖顺宝,刘凯,李泽辉. 中国风能资源空间分布的估算[J]. 地球信息科学2008, 10(5): 551-556.
LIAO Shunbao, LIU Kai, LI Zehui. Estimation of grid based spatial distribution of wind energy resource in China[J]. Geo-Information Science, 2008, 10(5): 551-556.
[8]
REN G, LIU J, WAN J, et al. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions[J]. Applied Energy, 2017, 204: 47-65.
[9]
ARCHER C L, CALDEIRA K. Global assessment of high-altitude wind power[J]. Energies, 2009, 2(2): 307-319.
[10]
邵垒,毛虹霖,邢胜,等. 高空风力发电发展现状及关键技术研究综述[J]. 新能源进展2020, 8(6): 477-484.
SHAO Lei, MAO Honglin, XING Sheng, et al. Review on development status and key technology of airborne wind energy system[J]. Advances in New & Renewable Energy, 2020, 8(6) : 477-484.
[11]
刘耀广,王耀坤,万志强,等. 系留悬浮式风力发电技术的研究进展与展望[J]. 航空工程进展2021, 12(4): 36-43.
LIU Yaoguang, WANG Yaokun, WAN Zhiqiang, et al. Research progress and prospect of tethered floating wind energy generation technology[J]. Advances in Aeronautical Science and Engineering, 2021, 12(4): 36-43.
[12]
高金兰,毋玉,李卓. 高空风力发电飞行器类型研究[J]. 国外电子测量技术2019, 38(9): 107-111.
GAO Jinlan, WU Yu, LI Zhuo. Research on type of high-altitude wind power aircraft[J]. Foreign Electronic Measurement Technology, 2019, 38(9) : 107-111.
[13]
KHEIRI M, VICTOR S, RANGRIZ S, et al. Aerodynamic performance and wake flow of crosswind kite power systems[J]. Energies, 2022, 15(7): 2449.
[14]
DIEHL M. Airborne wind energy: Basic concepts and physical foundations[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 3-22.
[15]
王若钦,严德,李柳青,等. 切风模式风力发电飞行器的进展与挑战[J]. 航空工程进展2018, 9(2): 139-146.
WANG Ruoqin, YAN De, LI Liuqing, et al. Advances and challenges of crosswind mode airborne wind energy aircrafts[J]. Advances in Aeronautical Science and Engineering, 2018, 9(2): 139-146.
[16]
ERHARD M, STRAUCH H. Control of towing kites for seagoing vessels[J]. IEEE Transactions on Control Systems Technology, 2012, 21(5): 1629-1640.
[17]
ZHILTSOV S A, KARPUSHIN A A. Application of an innovative wind power generator for electric power supply to remote consumers[J]. Modern Science, 2017(3): 32-39.
[18]
ROBERTS B W. Quad-rotorcraft to harness high-altitude wind energy[J]. Airborne Wind Energy: Advances in Technology Development and Research, 2018: 581-601.
[19]
ERHARD M, STRAUCH H. Flight control of tethered kites in autonomous pumping cycles for airborne wind energy[J]. Control Engineering Practice, 2015, 40: 13-26.
[20]
VERMILLION C, GLASS B, REIN A. Lighter-than-air wind energy systems[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 501-514.
[21]
Altaeros Energies. Giant inflatable wind turbine to soar to 300 metres[EB/OL]. (2014-03-21) [2023-06-02].
[22]
SAEED M, KIM M H. Aerodynamic performance analysis of an airborne wind turbine system with NREL Phase IV rotor[J]. Energy Conversion and Management, 2017, 134: 278-289.
[23]
马洪忠,水尊师,魏东辉. 飞行控制技术面临的挑战与发展[J]. 导航定位与授时2014, 1(2): 1-6.
MA Hongzhong, SHUI Zunshi, WEI Donghui. Challenges and development tendency of flight control[J]. Navigation Positioning & Timing, 2014, 1(2): 1-6.
[24]
袁昌盛,付金华. 国际上微型飞行器的研究进展与关键问题[J]. 航空兵器2005(6): 50-53.
YUAN Changsheng, FU Jinhua. Development and key technique of micro air vehicles[J]. Areo Weaponry, 2005(6): 50-53.
[25]
陈宗基,张汝麟,张平,等. 飞行器控制面临的机遇与挑战[J]. 自动化学报2013, 39(6): 703-710.
CHEN Zongji, ZHANG Rulin, ZHANG Ping, et al. Flight control: Challenges and opportunities[J]. Acta Automatica Sinica, 2013, 39(6): 703-710.
[26]
王美仙,李明,张子军. 飞行器控制律设计方法发展综述[J]. 飞行力学2007(2): 1-4.
WANG Meixian, LI Ming, ZHANG Zijun. Developing status of control law design methods for flight[J]. Flight Dynamics, 2007(2): 1-4.
[27]
LI Z, DENG L, KINLOCH I A, et al. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres[J]. Progress in Materials Science, 2023, 135: 101089.
[28]
ADHIKARI J, PRASANNA I V, PANDA S K. Power conversion system for high altitude wind power generation with medium voltage AC transmission[J]. Renewable Energy, 2016, 93: 562-578.
[29]
杨永强,马云鹏,武哲. 高空浮空器蒙皮材料特性分析与组合优化[J]. 北京航空航天大学学报2014, 40(3): 333-337.
YANG Yongqiang, MA Yunpeng, WU Zhe. Analysis and optimization of envelope material of high-altitude airships[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3): 333-337.
[30]
黄迪,赵海涛,邱野,等. 平流层飞艇蒙皮强度建模与仿真研究[J]. 计算机仿真2013, 30(1): 150-153.
HUANG Di, ZHAO Haitao, QIU Ye, et al. Modeling and simulation analysis of stratospheric airship envelope[J]. Computer Simulation, 2013, 30(1): 150-153.
[31]
赵达,刘东旭,孙康文,等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报2016, 37(1): 45-56
ZHAO Da, LIU Dongxu, SUN Kangwen, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56.
[32]
FECHNER U, SCHMEHL R. Downscaling of airborne wind energy systems[J]. Journal of Physics, 2016, 753(10): 102002.
[33]
张盛开,赵玉鹏. 高空气球弹性系留绳的张力分析[J]. 力学与实践1979, 1(3): 40-42.
ZHANG Shengkai, ZHAO Yupeng. Analysis of the tension of the elastic tether of high-altitude balloons[J]. Mechanics in Engineering, 1979, 1(3): 40-42.
[34]
王亚伟,贾月红,陈智谦,等. 飞艇系留系统静态与动态仿真研究[J]. 航天返回与遥感2012, 33(2): 93-99.
WANG Yawei, JIA Yuehong, CHEN Zhiqian, et al. Static and dynamic simulation of tethered airship[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(2): 93-99.
[35]
CHERUBINI A, PAPINI A, VERTECHY R, et al. Airborne wind energy systems: A review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1461-1476.
[36]
MESLEM N, DUMON J, HABLY A, et al. Online estimation of unknown aerodynamic forces acting on awe systems[J]. Intelligent Systems with Applications, 2022, 16: 200124.
[37]
VERMILLION C, GLASS B, REIN A. Lighter-than-air wind energy systems[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 501-514.
[38]
许国东,叶杭冶,解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学2018, 20(3): 44-50.
XU Guodong, YE Hangye, XIE Hongbin. The current state and future development of wind turbine technology[J]. Strategic Study of CAE, 2018, 20(3): 44-50.
[39]
ROBERTS B W. Tethered airborne wind-driven power generator: U. S. Patent Application 12/714, 070[P]. 2011-03-10.
[40]
李斌,张海超,白雪峰,等. 大型风电场测风数据全生命周期的探讨[J]. 分布式能源2017, 2(4): 40-46.
LI Bin, ZHANG Haichao, BAI Xuefeng, et al. Full life cycle of wind data in large scale wind farm[J]. Distributed Energy, 2017, 2(4): 40-46.
[41]
DESALEGN B, GEBEYEHU D, TAMRAT B, et al. Onshore versus offshore wind power trends and recent study practices in modeling of wind turbines' life-cycle impact assessments[J]. Cleaner Engineering and Technology, 2023: 100691.
[42]
HOUSKA B, DIEHL M. Optimal control of towing kites[C]//Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA: IEEE, 2006: 2693-2697.
[43]
李辉,胡姚刚,唐显虎,等. 并网风电机组在线运行状态评估方法[J]. 中国电机工程学报2010, 30(33): 103-109.
LI Hui, HU Yaogang, TANG Xianhu, et al. Method for on-line operating conditions assessment for a grid-connected wind turbine generator system[J]. Proceedings of the CSEE, 2010, 30(33): 103-109.
[44]
付忠广,王丽平,戈志华,等. 采用主成分分析法综合评价电站机组的运行状态[J]. 动力工程2008, 28(4): 548-551.
FU Zhongguang, WANG Liping, GE Zhihua, et al. Principal component analysis for comprehensive evaluation on information of power plant unit[J]. Journal of Chinese Society of Power Engineering, 2008, 28(4): 548-551.
[45]
娄清辉,牛洪海,陈俊,等. 海上多平台互联综合能源系统能效评估指标研究[J]. 分布式能源2021, 6(1): 14-20.
LOU Qinghui, NIU Honghai, CHEN Jun, et al. Research on energy efficiency evaluation indexes of offshore multi-platform interconnected integrated energy system[J]. Distributed Energy, 2021, 6(1): 14-20.
[46]
王志国,马一太,杨昭,等. 风力发电机组性能分析的模糊综合评判方法[J]. 太阳能学报2004, 25(2): 177-181.
WANG Zhiguo, MA Yitai, YANG Zhao, et al. Fuzzy comprehensive evaluation method of wind power generation unit[J]. Acta Energiae Solaris Sinica, 2004, 25(2): 177-181.
[47]
梁颖,方瑞明. 基于SCADA和支持向量回归的风电机组状态在线评估方法[J]. 电力系统自动化2013, 37(14): 7-12, 31.
LIANG Ying, FANG Ruiming. An online wind turbine condition assessment method based on SCADA and support vector regression[J]. Automation of Electric Power Systems, 2013, 37(14): 7-12, 31.
[48]
李俊卿,胡晓东,马阳硕,等. 基于合作博弈和区间划分的风电机组状态评价[J]. 智慧电力2022, 50(1): 7-13.
LI Junqing, HU Xiaodong, MA Yangshuo, et al. State assessment of wind turbines based on cooperative game and interval partition[J]. Smart Power, 2022, 50(1): 7-13.
[49]
肖利坤. 国内高空风力发电技术应用现状[J]. 农村电气化2023(7): 66-68.
XIAO Likun. Research on application status of high altitude wind power generation technology in China[J]. Rural Electrification, 2023(7): 66-68.
[50]
LUNNEY E, BAN M, DUIC N, et al. A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 899-911.
[51]
ALI Q S, KIM M-H. Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting[J]. Energy, 2021, 230: 120829.

基金

国家重点研发计划项目(2022YFE0117600)

PDF(5729 KB)

Accesses

Citation

Detail

段落导航
相关文章

/