离网式三端口风光互补抽水切换策略研究

张祥祥,罗振鹏,张思清,杨宝峰,王慧慧,韩相越,李燃

分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 35-42.

PDF(7168 KB)
PDF(7168 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 35-42. DOI: 10.16513/j.2096-2185.DE.2409105
学术研究

离网式三端口风光互补抽水切换策略研究

作者信息 +

Research on Off-Grid Three-Port Wind-Solar Complementary Pumping Switching Strategy

Author information +
文章历史 +

摘要

为解决风光随机波动性和间歇性给发电系统带来的干扰,基于三端口变换器设计离网式风光互补抽水系统,以风力发电系统和光伏发电系统作为系统输入电源端,异步电机抽水为系统负载端。首先,分别对风力发电系统、光伏发电系统及抽水系统建立数学模型,针对风光交替切换及同时切换的控制策略进行研究。其中,光伏侧采用优化变步长电导增量法,永磁同步电机与异步电机采用按转子磁链定向的矢量控制,通过异步电机电压外环控制直流母线电压,永磁同步电机转速外环控制系统功率,三端口变换器拓扑根据风光切换的变化情况也相应跟随改变,弥补了风光发电系统的不足,保证系统运行的稳定性,实现风光发电抽水和电能转化一体化的目标。最后,通过Matlab/Simulink软件搭建离网式三端口风光互补抽水系统的仿真模型,结果验证了模型设计的合理性及系统运行工作时切换策略的正确性和可行性。

Abstract

In order to solve the interference caused by random fluctuations and intermittence of wind and solar power on power generation systems, this paper designs an off-grid wind and solar complementary pumping system based on the three-port converter. The wind and photovoltaic power generation systems are used as input power supply of the system, and asynchronous motor pumping is used as load end of the system. Firstly, the mathematical models of wind power generation system, photovoltaic power generation system and pumping system are established respectively, and the control strategies of wind-solar alternate switching and simultaneous switching are studied. Among them, an optimized variable-step conductance increment method is employed on the photovoltaic side, and vector control based on rotor flux orientation is applied to the permanent magnet synchronous motor and asynchronous motor. The DC bus voltage is regulated by the outer loop control of the asynchronous motor voltage, and the system power is controlled by the outer loop speed control of the permanent magnet synchronous motor. The topology of the three-port converter varies with wind-solar switching. This compensates for the deficiency of the wind and solar power generation systems, ensures the stability of the system operation, and achieves the objective of integrating wind and solar pumping with energy conversion. Finally, a simulation model of the off-grid three-port wind and solar complementary pumping system is built using Matlab/Simulink software. The results validate the rationality of the model design and the correctness and feasibility of the switching strategy during system operation.

关键词

离网式 / 三端口变换器 / 风光互补 / 抽水 / 切换策略

Key words

off-grid type / three-port converter / wind-solar complementary / pumping / switching strategy

引用本文

导出引用
张祥祥, 罗振鹏, 张思清, . 离网式三端口风光互补抽水切换策略研究[J]. 分布式能源. 2024, 9(1): 35-42 https://doi.org/10.16513/j.2096-2185.DE.2409105
Xiangxiang ZHANG, Zhenpeng LUO, Siqing ZHANG, et al. Research on Off-Grid Three-Port Wind-Solar Complementary Pumping Switching Strategy[J]. Distributed Energy Resources. 2024, 9(1): 35-42 https://doi.org/10.16513/j.2096-2185.DE.2409105
中图分类号: TK72   

参考文献

[1]
侯堋,岳鸿禄. “双碳”目标水利科研发展思路探析[C]//2022中国水利学术大会论文集(第四分册). 郑州:黄河水利出版社,2022: 384-386.
HOU Peng, YUE Honglu. ‘Double carbon’ target water conservancy research and development ideas[C]//2022 China Water Conservancy Academic Conference Papers (fourth volume). Zhengzhou: Yellow River Water Conservancy Press, 2022: 384-386.
[2]
申建建,王月,程春田,等. 水风光多能互补发电调度问题研究现状及展望[J]. 中国电机工程学报2022, 42(11): 3871-3885.
SHEN Jianjian, WANG Yue, CHENG Chuntian, et al. Research status and prospect of generation scheduling for hydropower-wind-solar energy complementary system[J]. Proceedings of the CSEE, 2022, 42(11): 3871-3885.
[3]
刘军会,杨萌,邓方钊,等. 双碳目标下河南省构建新型电力系统成本分析[J]. 河南电力2022(): 90-94.
摘要
S2
LIU Junhui, YANG Meng, DENG Fangzhao, et al. Cost analysis of constructing a new power system in Henan province under the dual carbon goals[J]. Henan Electric Power, 2022(): 90-94.
S2
[4]
朱静慧,高佳,余欣梅,等. 碳中和背景下我国生态碳汇发展形势及建议[J]. 内蒙古电力技术2022, 40(6): 1-8.
ZHU Jinghui, GAO Jia, YU Xinmei, et al. Developmengt situation and suggestions for ecological carbon sink in China under background of carbon neutralization[J]. Inner Mongolia Electric Power, 2022, 40(6): 1-8.
[5]
姜红丽,刘羽茜,冯一铭,等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术2022, 43(1): 54-64.
JIANG Hongli, LIU Yuxi, FENG Yiming, et al. Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J]. Power Generation Technology, 2022, 43(1): 54-64.
[6]
童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力2021, 49(5): 1-6.
TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5): 1-6.
[7]
钱为,徐政,陈锐坚. 风光互补提水系统的研究与开发[J]. 太阳能学报2019, 40(9): 2479-2485.
QIAN Wei, XU Zheng, CHEN Ruijian. Research and development of hybrid PV-wind pumoing systems[J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2479-2485.
[8]
张思清,罗振鹏,石多峰,等. 离网型同步风力发电机单位功率因数新型控制策略[J]. 电气传动2022, 52(3): 3-9, 16.
ZHANG Siqing, LUO Zhenpeng, SHI Duofeng, et al. New control strategy for unit power factor stand-alone synchronous wind turbine [J]. Electric Drive, 2022, 52(3): 3-9, 16.
[9]
杨尚骏. 风光互补发电系统控制仿真研究[J]. 佳木斯大学学报(自然科学版), 2022, 40(5): 20-24, 38.
YANG Shangjun. Study on control simulation of wind-solar hybrid power generation system[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(5): 20-24, 38.
[10]
安晓彤,皇甫宜耿,马瑞卿. 离网型风光混合能源发电系统的仿真研究[J]. 计算机仿真2013, 30(8): 116-121.
AN Xiaotong, HUANGFU Yigeng, MA Ruiqing. Simulation study of off-grid wind-solar hybrid energy power generation system[J]. Computer Simulation, 2013, 30(8): 116-121.
[11]
BALAKISHAN P, CHIDAMBARAM I A, MANIKANDAN M. Smart fuzzy control based hybrid PV-wind energy generation system[J]. Materials Today: Proceedings, 2023, 80: 2929-2936.
[12]
成云朋,李建华,蔡寿国,等. 考虑损耗的永磁风力发电系统改进功率反馈法最大风能跟踪控制[J]. 中国电力2023, 56(10): 62-70.
CHENG Yunpeng, LI Jianhua, CAI Shouguo, et al. Improved maximum power point tracking control of power signal feedback method for permanent magnet synchronous generator considering loss [J]. Electric Power, 2023, 56(10): 62-70.
[13]
严俊,董知周,刘亮亮. 风光互补发电系统并网逆变器控制策略研究[J]. 电气自动化2022, 44(1): 27-30.
YAN Jun, DONG Zhizhou, LIU Liangliang. Research on grid-connected inverter control strategy of wind-solar hybrid power generation system[J]. Electrical Automation, 2022, 44(1): 27-30.
[14]
王金鑫,任永峰,孟庆天,等. 自抗扰控制的九开关变换器提升分散式风电系统电能质量[J/OL]. 高电压技术,1-10[2023-06-14].
WANG Jinxin, REN Yongfeng, MENG Qingtian, et al. Enhancement of distributed wind power system power quality by nine-switch converter with active disturbance rejection control [J/OL]. High Voltage Engineering, 1-10[2023-06-14].
[15]
张东绪. 小型风光互补供电提水系统的专用变频器研究[D]. 呼和浩特:内蒙古大学,2013.
ZHANG Dongxu. Research on the specialized frequency converter based on small-sized water pumping systems relying on hybrid power of wind and solar[D]. Hohhot: Inner Mongolia University, 2013.
[16]
赵君力,胡开伟,谢孟,等. 隔离三端口电能路由变换器的模式切换控制策略[J]. 应用科技2023, 50(5): 78-82.
ZHAO Junli, HU Kaiwei, XIE Meng, et al. Mode switching control strategy of isolated three-port power router[J]. Applied Science and Technology, 2023, 50(5): 78-82.
[17]
CHOUDHURY A, PATI S, SHARMA R, et al. Real-time validation of two-generator-based isolated hybrid microgrid system using a nine-switch converter[J]. Electrica, 2023, 23(2): 345-356.
[18]
CHOUDHURY A, PATI S, KAR K S, et al. Hybridization and power control of an isolated PV-SEIG-based generation system using novel nine switch converter[J]. Electrica, 2023, 23(1): 28-39.
[19]
PINJALA M K, BHIMASINGU R. Improving the DC-Link utilization of nine-switch boost inverter suitable for six-phase induction motor[J]. IEEE Transactions on Transportation Electrification, 2020, 6(3): 1177-1187.

基金

内蒙古自治区自然科学基金项目(2021LHMS05012;2023MS05004)

PDF(7168 KB)

Accesses

Citation

Detail

段落导航
相关文章

/