基于模型预测控制的风光储综合能源系统优化调度

李佳欣,王智伟

分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 43-53.

PDF(23268 KB)
PDF(23268 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 43-53. DOI: 10.16513/j.2096-2185.DE.2409106
学术研究

基于模型预测控制的风光储综合能源系统优化调度

作者信息 +

Optimal Dispatching of Wind-Solar-Storage Integrated Energy System Based on Model Predictive Control

Author information +
文章历史 +

摘要

由于风光及用户侧的不确定性,采用传统的优化调度响应不及时会导致日内的供需不平衡。为此,构建一种含风机、光伏、蓄电池和光热的风光储综合能源系统,充分利用可再生能源,并在日前调度的基础上,基于模型预测控制算法并结合能源系统的状态空间方程,建立日内滚动优化数学模型;在Matlab平台上进行典型日的算例仿真,分析系统各设备的功率输出及供能情况,仿真结果显示:在3种典型日下该系统日运行费用较日前分别减少12.3%、7.4%、11.3%,且供电、热不平衡率均有所下降,提高了供能系统运行的经济性和可靠性。

Abstract

Due to the uncertainties in both the landscape and user demand, traditional optimal scheduling responses can result in imbalances between supply and demand within a single day. In order to address this issue, a comprehensive wind and solar storage energy system is constructed, incorporating fans, photovoltaic panels, batteries, as well as light and heat technologies to fully utilize renewable energy sources. Building upon day-ahead scheduling, a mathematical model for day-rolling optimization is established using the model predictive control algorithm combined with the state space equation of the energy system. A typical daily example simulation is conducted on the Matlab platform. By analyzing the power output and energy supply of each device within the system, simulation results demonstrate that in three typical days there is a reduction of 12.3%, 7.4%, and 11.3% respectively in daily operating costs for the system while also reducing power supply and thermal imbalances rate which enhances both economic efficiency and reliability of this energy supply system.

关键词

综合能源系统 / 优化调度 / 模型预测控制 / 日内滚动优化 / 经济性

Key words

integrated energy systems / optimized scheduling / model predictive control / intraday rolling optimization / economy

引用本文

导出引用
李佳欣, 王智伟. 基于模型预测控制的风光储综合能源系统优化调度[J]. 分布式能源. 2024, 9(1): 43-53 https://doi.org/10.16513/j.2096-2185.DE.2409106
Jiaxin LI, Zhiwei WANG. Optimal Dispatching of Wind-Solar-Storage Integrated Energy System Based on Model Predictive Control[J]. Distributed Energy Resources. 2024, 9(1): 43-53 https://doi.org/10.16513/j.2096-2185.DE.2409106
中图分类号: TM732   

参考文献

[1]
刘晓华,张涛,刘效辰,等. 面向双碳目标的建筑能源系统再认识[J]. 力学学报2023, 55(3): 699-709.
LIU Xiaohua, ZHANG Tao, LIU Xiaochen, et al. Rethinking of the building energy system towards the carbon neutral target[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 699-709.
[2]
何李丽,张恒. “双碳”目标下我国能源转型路径[J]. 上海节能2023(9): 1285-1294.
HE Lili, ZHANG Heng. China's energy transformation path under “double carbon” goal[J]. Shanghai Energy Conservation, 2023(9): 1285-1294.
[3]
杨贤东,袁旭峰,熊炜,等. 考虑源荷不确定性的风光火储系统低碳经济调度[J]. 智慧电力2022, 50(8): 22-29, 53.
YANG Xiandong, YUAN Xufeng, XIONG Wei, et al. Low-carbon economic dispatch of wind-solar-fired-storage system considering source-load uncertainty[J]. Smart Power, 2022, 50(8): 22-29, 53.
[4]
SAINA Z, RUOPENG H, TAOZHI Z. Evolution of China's building energy service industry based on synergetic theory[J]. Applied Sciences, 2022, 12(24): 12648-12648.
[5]
DENG Q, WANG G, WANG Y, et al. A quantitative analysis of the impact of residential cluster layout on building heating energy consumption in cold IIB regions of China[J]. Energy and Buildings, 2021, 253: 111515.
[6]
杨培文,李洪涛,杨锡运,等. 风电机组技术现状分析及未来发展趋势预测[J]. 电力电子技术2020, 54(3): 79-82.
YANG Peiwen, LI Hongtao, YANG Xiyun, et al. Analysis of the present Situation of wind turbine technology and Forecast of future development trend [J]. Power Electronics Technology, 2020, 54(3): 79-82.
[7]
温港成. 双碳目标下区域综合能源系统的优化配置与协同调控[D]. 北京:华北电力大学,2023.
WEN Gangcheng. Optimized configuration and coordinated regulation of regional integrated energy system under dual carbon target[D]. Beijing: North China Electric Power University, 2023.
[8]
王朝亮,肖涛,李少杰,等. 农村住宅建筑光储直柔系统性能研究[J/OL]. 中国电力:1-10[2023-09-08].
WANG Zhaoliang, XIAO Tao, LI Shaojie, et al. Performance investigation of PEDF system applied in rural areas [J/OL]. China Electric Power: 1-10[2023-09-08].
[9]
IRUDAYA F E R. A detailed review on wind and solar hybrid green energy technologies for sustainable smart cities[J]. Polytechnica, 2023, 6(1): 1.
[10]
MA X, LIU Y, YAN J, et al. A WGAN-GP-based scenarios generation method for wind and solar power complementary study[J]. Energies, 2023, 16(7): 3114.
[11]
TUTKUN N, SAN E S. Optimal power scheduling of an off-grid renewable hybrid system used for heating and lighting in a typical residential house[C]//2013 13th International Conference on Environment and Electrical Engineering (EEEIC). November 01-03 2013, Wroclaw, Poland: IEEE.
[12]
DASGUPTA K, ROY P K, MUKHERJEE V. Solution of short term integrated hydrothermalsolar-wind scheduling using sine cosine algorithm[J]. Energy Strategy Reviews, 2022, 40: 100824.
[13]
PAPUMONI S, NIPANKUMAR D, MRINAL B. Robust energy storage system for stable in wind and solar[J]. Renewable and Sustainable Energy Reviews, 2024, 191: 114079-.
[14]
徐艳芳,杨培宏,赵欢,等. 电热综合能源系统多时间尺度优化调度策略研究[J]. 电工技术2023(20): 41-44.
XU Yanfang, YANG Peihong, ZHAO Huan, et al. Research on multi-time scale optimized scheduling strategy of electric-thermal integrated energy system [J]. Electrical Engineering, 2023(20): 41-44.
[15]
YING M, YU W, SIZHOU S, et al. Multi-objective optimal dispatching of demand response-enabled microgrid considering uncertainty of renewable energy generations based on two-level iterative strategy[J]. Energy Reports, 2023, 9: 1842-1858.
[16]
马永翔,张勋,淡文国,等. 基于混合策略改进粒子群算法的配电网无功优化研究[J]. 电力电容器与无功补偿2023, 44(6): 32-38, 78.
MA Yongxiang, ZHANG Xun, DAN Wenguo, et al. Study on reactive power optimization of distribution network based on multi-strategy fusion improved particle swarm algorithm[J]. Power Capacitors and Reactive Power Compensation, 2023, 44(6): 32-38, 78.
[17]
MIAO B, LIN J, LI H, et al. Day-ahead energy trading strategy of regional integrated energy system considering energy cascade utilization[J]. IEEE Access, 2020, 8: 138021-138035.
[18]
PARISIO A, WIEZOREK C, KYNTÄJÄ T, et al. Cooperative MPC-based energy management for networked microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 3066-3074.
[19]
刘一欣,郭力,王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报2018, 38(14): 4013-4022, 4307.
LIU Yixin, GUO Li, WANG Chengshan. Economic dispatch of microgrid based on two stage robust optimization [J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022, 4307.
[20]
鞠文韬,崔承刚,杨锦成,等. 考虑柔性负荷响应的综合能源系统多尺度优化调度研究[J]. 浙江电力2020, 39(12): 12-19.
JU Wentao, CUI Chenggang, YANG Jincheng, et al. Research on multi-scale optimal scheduling of integrated energy system considering flexible load response[J]. Zhejiang Electric Power, 2020, 39(12): 12-19.
[21]
PALMA-BEHNKE R, BENAVIDES C, LANAS F, et al. A microgrid energy management system based on the rolling horizon strategy[J]. IEEE Transactions on smart grid, 2013, 4(2): 996-1006.
[22]
邢尚林. 太阳能光伏发电的中长期随机特性分析[J]. 中国新通信2018, 20(12): 222-223.
XING Shanglin. Analysis of medium-and long-term stochastic characteristics of solar photovoltaic power generation [J]. China New Communications, 2018, 20(12): 222-223.
[23]
MEHIGAN L, DEANE J, GALLACHÓIR B, et al. A review of the role of distributed generation (DG) in future electricity systems[J]. Energy, 2018, 163: 822-836.
[24]
张政. 太阳能光伏发电站系统设计与运行研究[D]. 沈阳:沈阳农业大学,2021.
ZHANG Zheng. System design and operation research of solar photovoltaic power station system [D]. Shenyang: Shenyang Agricultural University, 2021.
[25]
李明,郑云平,印欣,等. 考虑用户舒适度的分散式电采暖调峰优化控制[J]. 南方电网技术2023, 17(12): 101-108.
LI Ming, ZHENG Yunping, YIN Xin, et al. Optimal control of decentralized electric heating for peak regulation considering user satisfaction[J]. Southern Power System Technology, 2023, 17(12): 101-108.
[26]
HAN Y, LIAO Y, MA X, et al. Modeling and optimization of a novel Oxy-fuel/solar/wind/battery power generation system[J]. Applied Thermal Engineering, 2022, 214: 118862.
[27]
HUANG C, ZONG Y, YOU S, et al. Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities[J]. Applied Energy, 2023, 335: 120762.
[28]
王南勤,刘泽辰,张伟,等. 基于模型预测控制的含新能源多阶段AVC优化策略[J]. 电网与清洁能源2023, 39(7): 118-126.
WANG Nanqin, LIU Zechen, ZHANG Wei, et al. Multi-stage AVC optimization strategy with new energy based on model predictive control [J]. Power System and Clean Energy, 2023, 39(7): 118-126.

PDF(23268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/