基于天气二次分类的地表太阳辐射预测方法

杨家豪,张莲,梁法政,杨玉洁,张未

分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 54-63.

PDF(11611 KB)
PDF(11611 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 54-63. DOI: 10.16513/j.2096-2185.DE.2409107
应用技术

基于天气二次分类的地表太阳辐射预测方法

作者信息 +

Surface Solar Radiation Forecast Using Quadratic Weather Classification Method

Author information +
文章历史 +

摘要

为提高地表太阳辐射在复杂天气情况下的预报精确度并减小预报的时间成本,结合广州市白云区的历史气象数据,提出了一种以中国气象局的天气划分标准对历史天气进行分类的方法,并在各天气的子模型下使用支持向量回归(support vector regression, SVR)对地表辐照度进行预报。由于天气类型较多,因此对各子模型利用极限梯度提升(extreme gradient boosting, XGBoost)算法进行特征分析,并利用Mann-Whitney检验,合并了特征重要性类似的序列,实现了天气的二次分类,降低了模型的复杂度。结果显示,本文模型在连续12个月的预报中,相关系数、准确率和合格率均超过了评判指标的要求,具有较高的预测精度。且预报总计用时10.633 h,相比其余模型的13~34 h,预报速度更快,迎合了光伏电站中对太阳辐射预报的及时性的需求。

Abstract

To improve the surface solar radiation forecasting accuracy in complicated weathers and to reduce the time-consuming cost, this paper proposes a method that using the China Meteorological Administration's weather classification criteria, to classify the historical meteorological data of Baiyun District, Guangzhou, into different weather types to forecast the surface solar radiation in sub models using support vector regression (SVR). Considering that the weather types are many, by analyzing the features of each sub model with extreme gradient boosting (XGBoost) algorithm and using Mann-Whitney test, series with similar feature importance are merged, thus achieving the secondary weather classification and reducing the complexity of forecasting model. Forecasting result by the model proposed shows that all the correlation coefficient, accuracy rate and qualification rate for the 12 successive months have exceeded the requirement of evaluation criteria, which guarantees a high accuracy. Besides, it totally consumes 10.633 hours to forecast, promising a faster forecasting method compared with the 13~34 hours of other models, which meets the demand for timely solar radiation forecasting in photovoltaic power plants.

关键词

地表太阳辐射 / 天气分类 / 支持向量回归(SVR) / 极限梯度提升算法(XGBoost) / 预测

Key words

surface solar radiation / weather classification / support vector regression (SVR) / extreme gradient boosting (XGBoost) / forecast

引用本文

导出引用
杨家豪, 张莲, 梁法政, . 基于天气二次分类的地表太阳辐射预测方法[J]. 分布式能源. 2024, 9(1): 54-63 https://doi.org/10.16513/j.2096-2185.DE.2409107
Jiahao YANG, Lian ZHANG, Fazheng LIANG, et al. Surface Solar Radiation Forecast Using Quadratic Weather Classification Method[J]. Distributed Energy Resources. 2024, 9(1): 54-63 https://doi.org/10.16513/j.2096-2185.DE.2409107
中图分类号: TM615   

参考文献

[1]
李忠财,杨义根,陈晨,等. 基于“双碳”目标下我国电力行业低碳建设管理的探讨[J]. 现代工业经济和信息化2023, 13(7): 160-162.
LI Zhongcai, YANG Yigen, CHEN Chen, et al. Exploration of low carbon construction management in China's electric power industry based on the “Double Carbon” goal[J]. Modern Industrial Economy and Informationization, 2023, 13(7): 160-162.
[2]
WILBERFORCE T, BAROUTAJI A, EL HASSAN Z, et al. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies[J]. Science of The Total Environment, 2019, 659: 851-861.
[3]
姚玉璧,郑绍忠,杨扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报2022, 43(10): 524-535.
YAO Yubi, ZHENG Shaozhong, YANG Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535.
[4]
邹才能,熊波,李士祥,等. 碳中和背景世界能源转型与中国式现代化的能源革命[J/OL]. 石油科技论坛:1-20[2023-11-10].
ZOU Caineng, XIONG Bo, LI Shixiang, et al. World e-nergy transformation and China's modern energy revolut-ion under carbon neutrality background[J/OL]. Petroleu-m Science and Technology Forum: 1-20[2023-11-10].
[5]
国家能源局. 2023年1—7月全国电力工业统计数据[EB/OL]. (2023-08-17)[2023-09-02]
[6]
陈凡,李智,丁津津,等. 考虑光伏机理与数据驱动结合的短期功率预测[J]. 科学技术与工程2023, 23(20): 8686-8692.
CHEN Fan, LI Zhi, DING Jinjin, et al. Consider short-term power prediction combining photovoltaic mechanism and data-driven[J]. Science Technology and Engineering, 2023, 23(20): 8686-8692.
[7]
董存,王铮,白捷予,等. 光伏发电功率超短期预测方法综述[J]. 高电压技术2023, 49(7): 2938-2951.
DONG Cun, WANG Zheng, BAI Jieyu, et al. Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High Voltage Engineering, 2023, 49(7): 2938-2951.
[8]
中华人民共和国住房和城乡建设部. 光伏发电站设计规范:GB 50797—2012 [S]. 北京:中国标准出版社,2012.
[9]
宋子昊. 分布式光伏发电影响因素综述[J]. 河南科技2020, 39(32): 136-139.
SONG Zihao. Summary of influencing factors of distributed photovoltaic power generation[J]. Journal of Henan Science and Technology, 2020, 39(32): 136-139.
[10]
刘洋. 光伏发电系统中影响发电量因素分析[J]. 四川水力发电2022, 41(1): 27-30.
LIU Yang. Analysis on the factors affecting power generation in photovoltaic power generation system[J]. Sichuan Water Power, 2022, 41(1): 27-30.
[11]
胡雪凯,时珉,胡文平,等. 光伏电站功率预测影响因素分析及准确率提升方法研究[J]. 河北电力技术2020, 39(2): 1-6, 14.
HU Xuekai, SHI Min, HU Wenping, et al. Study on power forecast affecting factors of photovoltaic power plant and method of improving accuracy rate[J]. Hebei Electric Power, 2020, 39(2): 1-6, 14.
[12]
代倩,段善旭,蔡涛,等. 基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J]. 中国电机工程学报2011, 31(34): 28-35.
DAI Qian, DUAN Shanxu, CAI Tao, et al. Short-term PV generation system forecasting model without irradiation based on weather type clustering[J]. Proceedings of the CSEE, 2011, 31(34): 28-35.
[13]
周勇. 逐日太阳辐射估算模型及室外计算辐射研究[D]. 西安:西安建筑科技大学,2021.
ZHOU Yong. Research on the development of the daily solar radiation estimation models and outdoor design radiation[D]. Xi'an: Xi'an University of Architecture and Technology, 2021.
[14]
鲁玉军,周世豪,胡小勇. 基于BP神经网络和小波神经网络的太阳辐射强度预测[J]. 软件工程2023, 26(1): 5-8, 4.
LU Yujun, ZHOU Shihao, HU Xiaoyong. Prediction of solar radiation intensity based on BP and wavelet neural network[J]. Software Engeering, 2023, 26(1): 5-8, 4.
[15]
ZHANG L, WILSON R, SUMNER M, et al. Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach[J]. Renewable Energy, 2023, 216: 118952.
[16]
王香云,申彦波,李利秋. 中国太阳能资源领域标准的制定综述[J]. 太阳能2020(12): 17-23.
WANG Xiangyun, SHEN Yanbo, LI Liqiu. Review of formulation of standards in the field of solar energy resources in China[J]. Solar Energy, 2020(12): 17-23.
[17]
张蕊,李安燚,刘世岩,等. 基于波动特征提取下云层分型的短期光伏发电功率预测方法[J/OL]. 太阳能学报:1-13[2023-11-09].
ZHANG Rui, LI Anyi, LIU Shiyan, et al. A short-term photovoltaic power generation power prediction method based on cloud classification using wave feature extraction[J]. Acta Energiae Solaris Sinica, 1-13[2023-11-09].
[18]
KOUSOUNADIS-KNOUSEN M A, BAZIONIS I K, GEORGILAKI A P, et al. A Review of solar power scenario generation methods with focus on weather classifications, temporal horizons, and deep generative models[J]. Energies, 2023, 16(15): 5600.
[19]
ZHENG L, SU R, SUN X, et al. Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output[J]. Energy, 2023, 271: 127009.
[20]
臧海祥,程礼临,刘玲,等. 基于数据驱动的太阳辐射估计和预测研究与展望[J]. 电力系统自动化2021, 45(11): 170-183.
ZANG Haixiang, CHENG Lilin, LIU Ling, et al. Research and prospect for data-driven estimation and prediction of solar radiation[J]. Automation of Electric Power Systems, 2021, 45 (11): 170-183.
[21]
王飞,米增强,甄钊,等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报2013, 33(34): 75-82, 14.
WANG Fei, MI Zengqiang, ZHEN Zhao, et al. A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 33 (34): 75-82, 14.
[22]
王鹏翔,沈娟,王菁旸,等. 基于PCA-LMD-WOA-ELM的短期光伏功率预测[J]. 智慧电力2022, 50(6): 72-78.
WANG Pengxiang, SHEN Juan, WANG Jingyang, et al. Short term photovoltaic power prediction based on PCA-LMD-WOA-ELM[J]. Smart Power, 2022, 50(6): 72-78.
[23]
全国气象防灾减灾标准化技术委员会(SAC/TC 345).公共气象服务:GB/T 22164—2017 [S]. 北京:中国标准出版社,2017.
[24]
World Meteorological Organization (2008) Guide to inst-ruments and methods of observation[J/OL]. Accessed 21 June 2020.
[25]
NAWARE D, MITRA A. Weather classification-based load and solar insolation forecasting for residential applications with LSTM neural networks [J]. Electrical Engineering, 2022, 104(1): 347-361.
[26]
全国气象防灾减灾标准化技术委员会(SAC/TC 345).降水量等级:GB/T 28592—2012 [S]. 北京:中国标准出版社,2012.
[27]
张东海,李忠燕,丁立国,等. 影响光伏发电功率的气象因子分析及其预测检验[J]. 沙漠与绿洲气象2023, 17(3): 157-164.
ZHANG Donghai, LI Zhongyan, DING Liguo, et al. Diagnostic analysis of the impact of meteorological factors on photovoltaic power output and its prediction test[J]. Desert and Oasis Meteorology, 2023, 17 (3): 157-164.
[28]
张淑花,李新功,李奇虎,等. 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理2022, 45(3): 734-745.
ZHANG Shuhua, LI Xingong, LI Qihu, et al. Estimation of surface solar radiation and analysis of its influencing factors in the Tizinafu River Basin[J]. Arid Land Geography, 2022, 45(3): 734-745.
[29]
李小军,辛晓洲,彭志晴. 2003~2012年中国地表太阳辐射时空变化及其影响因子[J]. 太阳能学报2017, 38(11): 3057-3066.
LI Xiaojun, XIN Xiaozhou, PENG Zhiqing. Change analysis of surface solar radiation in China from 2003 to 2012[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3057-3066.
[30]
PAPAZOGLOU G, BISKAS P. Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem[J]. Energies. 2023; 16(3): 1152.
[31]
全国电网运行与控制标准化技术委员会(SAC/TC 446).调度侧风电或光伏功率预测系统技术要求:GB/T 40607—2021[S]. 北京:中国标准出版社,2021.

基金

重庆市教委科学技术研究项目(KJQN201801142,KJQN202001144)
重庆市技术创新与应用发展专项项目(cstc2019jscx-msxmX0003)
重庆理工大学研究生创新项目(gzlcx20232039)

PDF(11611 KB)

Accesses

Citation

Detail

段落导航
相关文章

/