基于FIR-MSMA的配电网测频算法

张明帅,郭志全,夏炜,李波,唐旭明,王莹康

分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 72-79.

PDF(4775 KB)
PDF(4775 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (1) : 72-79. DOI: 10.16513/j.2096-2185.DE.2409109
应用技术

基于FIR-MSMA的配电网测频算法

作者信息 +

Frequency Measurement Algorithm for Distribution Network Based on FIR-MSMA

Author information +
文章历史 +

摘要

针对配电网中含有谐波、带外干扰及其他严重干扰的同步相量测量问题,提出一种基于有限冲击响应滤波器和M类同步相量测量算法(finite impulse response-M synchrophasor measurement algorithm, FIR-MSMA)相结合的配电网测频算法。该方法利用最小二乘法设计出FIR-1滤波器提取低频信号,在此基础上利用设计的FIR-2滤波器实现频率测量的目的,并分析2种滤波器参数设定的原则。利用Matlab软件编制算法仿真程序,验证所提算法的动态测量性能。结果表明,相比于基于离散傅里叶变换的算法和基于滑动平均滤波器的算法,基于FIR-MSMA的算法具有更强的抗干扰能力和更高的测量精度。

Abstract

Aiming at the problem of synchrophasor measurement with harmonics, out-of-band interference, and other dynamic interferences, a new frequency measurement algorithm combining a finite impulse response filter with M-class synchrophasor measurement algorithm (FIR-MSMA) is proposed for distribution networks. Firstly, the least squares method is utilized to design a FIR-1 filter for extracting the low-frequency signals, and to design a FIR-2 filter for measuring frequency. Then, the parameter setting principles for two types of filters are analyzed. Finally, simulation examples in Matlab software are performed to verify the dynamic measurement performance of the proposed algorithm. The results show that the FIR-MSMA algorithm has stronger anti-interference ability and higher measurement accuracy than the discrete Fourier transform algorithm and the sliding average filter algorithm.

关键词

配电网 / 同步测量单位 / 频率测量 / 有限冲激响应滤波器 / 频率误差

Key words

distribution network / synchrophasor measurement unit / frequency measurement / finite impulse response filter / frequency error

引用本文

导出引用
张明帅, 郭志全, 夏炜, . 基于FIR-MSMA的配电网测频算法[J]. 分布式能源. 2024, 9(1): 72-79 https://doi.org/10.16513/j.2096-2185.DE.2409109
Mingshuai ZHANG, Zhiquan GUO, Wei XIA, et al. Frequency Measurement Algorithm for Distribution Network Based on FIR-MSMA[J]. Distributed Energy Resources. 2024, 9(1): 72-79 https://doi.org/10.16513/j.2096-2185.DE.2409109
中图分类号: TK01; TM71   

参考文献

[1]
李乾坤,刘毅力,刘圣荇. 基于改进LMS算法的谐波电流检测[J]. 分布式能源2022, 7(5): 9-16.
LI Qiankun, LIU Yili, LIU Shengxing. Harmonic current detection based on improved LMS algorithm[J]. Distributed Energy, 2022, 7(5): 9-16.
[2]
李秀芬,李泽昊,赵建利. 考虑平抑新能源电站功率波动和谐波治理的储能系统控制策略研究[J]. 内蒙古电力技术2023, 41(3): 16-25.
LI Xiufen, LI Zehao, ZHAO Jianli. Research on control strategy of energy storage system considering suppression of power fluctuations and harmonic management for new energy power station[J]. Inner Mongolia Electric Power, 2023, 41(3): 16-25.
[3]
黄俊滔,杨苓. 基于粒子群算法的光储微电网谐波电流抑制参数组寻优策略[J]. 智慧电力2023, 51(7): 44-50.
HUANG Juntao, YANG Ling. Parameter group optimization strategy to suppress harmonic current of PV-storage microgrid based on PSO algorithm[J]. Smart Power, 2023, 51(7): 44-50.
[4]
刘建伟,李学斌,刘晓鸥. 有源配电网中分布式电源接入与储能配置[J]. 发电技术2022, 43(3): 476-484.
LIU Jianwei, LI Xuebin, LIU Xiaoou. Distributed power access and energy storage configuration in active distribution network[J]. Power Generation Technology, 2022, 43(3): 476-484.
[5]
张琳,任双雪,惠子珈,等. 实现配电网PMU频率测量的数字微分器研究[J]. 中国电机工程学报2021, 41(22): 7640-7647.
ZHANG Lin, REN Shuangxue, HUI Zijia, et al. Design of digital differentiator for frequency measurement in distribution grid PMU[J]. Proceedings of the CSEE, 2021, 41(22): 7640-7647.
[6]
邢光正,汪芙平,黄松岭,等. 基于最优滤波算法的配电网PMU及其性能测试[J]. 电网技术2019, 43(3): 769-776.
XING Guangzheng, WANG Fuping, HUANG Songling, et al. Distribution level PMU equipped with optimal filtering algorithm and its performance evaluation[J]. Power System Technology, 2019, 43(3): 769-776.
[7]
舒骁骁,祝君剑,朱亮,等. 计及噪声影响的高准确度迭代滤波电网频率测量方法[J]. 中国测试2020, 46(7): 54-59, 132.
SHU Xiaoxiao, ZHU Junjian, ZHU liang, et al. High accuracy iterative filtering frequency measurement method for power system based on noise effects[J]. China Measurement & Test, 2020, 46(7): 54-59, 132.
[8]
麦瑞坤,何正友,何文,等. 电力系统频率的自适应跟踪算法[J]. 中国电机工程学报2010, 30(16): 73-78.
MAI Ruikun, HE Zhengyou, HE Wen, et al. Adaptive frequency tracking algorithm for power systems[J]. Proceedings of the CSEE, 2010, 30(16): 73-78.
[9]
罗丹,温和,唐璐. 电网动态频率测量的移频迭代滤波方法及应用研究[J]. 电力自动化设备2019, 39(5): 151-156.
LUO Dan, WEN He, TANG Lu. Research on frequency-shifting iterative filtering method for dynamic frequency measurement of power system and its application[J]. Electric Power Automation Equipment, 2019, 39(5): 151-156.
[10]
陆惠斌,王大成,徐勇,等. 基于自适应线性插值和最小二乘法的改进Cross测频算法[J]. 电力科学与技术学报2016, 31(3): 103-108.
LU Huibin, WANG Dacheng, XU Yong, et al. Improved cross frequency measurement based on adaptive linear interpolation and least square method[J]. Journal of Electric Power Science and Technology, 2016, 31(3): 103-108.
[11]
JAIN S K, JAIN P, SINGH S N. A fast harmonic phasor measurement method for smart grid applications[J]. IEEE Transactions on Smart Grid, 2017, 8(1): 493-502.
[12]
RADULOVIĆ M, ZEČEVIĆ Ž, KRSTAJIĆ B. Dynamic phasor estimation by symmetric Taylor weighted least square filter[J]. IEEE Transactions on Power Delivery, 2020, 35(2): 828-836.
[13]
赵帅旗,肖辉,李文俊,等. 基于多谱线插值法和复调制细化法的电力系统谐波分析[J]. 电测与仪表2019, 56(18): 10-15, 24.
ZHAO Shuaiqi, XIAO Hui, LI Wenjun, et al. Harmonic analysis of power system based on multi-spectral interpolation and complex modulation[J]. Electrical Measurement & Instrumentation, 2019, 56(18): 10-15, 24.
[14]
郭成,尹轲,张艳萍,等. 一种基于综合DFT和Prony算法的谐波与间谐波分析方法[J]. 电力系统保护与控制2021, 49(17): 1-9.
GUO Cheng, YIN Ke, ZHANG Yanping, et al. A harmonic and interharmonic analysis method based on integrated DFT and Prony algorithm[J]. Power System Protection and Control, 2021, 49(17): 1-9.
[15]
王科,陈丽华,麦瑞坤,等. 基于扩展卡尔曼滤波频率跟踪的DFT同步相量测量算法[J]. 电网技术2014, 38(9): 2519-2524.
WANG Ke, CHEN Lihua, MAI Ruikun, et al. An improved discrete Fourier transformation based synchronous phasor measurement algorithm using frequency tracking founded on extended Kalman filter[J]. Power System Technology, 2014, 38(9): 2519-2524.
[16]
牛胜锁,王春鑫,梁志瑞,等. 基于改进强跟踪无迹卡尔曼滤波的电力信号同步相量跟踪算法[J]. 电工技术学报2021, 36(11): 2255-2264.
NIU Shensuo, WANG Chunxin, LIANG Zhirui, et al. An algorithm for tracking synchronous phasor of power signals based on improved strong tracking unscented Kalman filter[J]. Transactions on China Electrotechnical Society, 2021, 36(11): 2255-2264.
[17]
吴建章,梅飞,陈畅,等. 基于经验小波变换的电力系统谐波检测方法[J]. 电力系统保护与控制2020, 48(6): 136-143.
WU Jianzhang, MEI Fei, CHEN Chang, et al. Harmonic detection method in power system based on empirical wavelet transform[J]. Power System Protection and Control, 2020, 48(6): 136-143.
[18]
ZHAO W, SHANG L, SUN J. Power quality disturbance classification based on time-frequency domain multi-feature and decision tree[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 27.
[19]
DUDA K, ZIELIŃSKI T P, BIEŃ A, et al. Harmonic phasor estimation with flat-top FIR filter[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5): 2039-2047.
[20]
ZEČEVIĆ Ž, KRSTAJIĆ B. Dynamic harmonic phasor esti-mation by adaptive taylor-based bandpass Filter[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6500509.
[21]
孙冬雪,王江波,姚国盛,等. 基于余弦平顶窗的谐波相量测量[J]. 电力系统保护与控制2023, 51(1): 139-147.
SUN Dongxue, WANG Jiangbo, YAO Guosheng, et al. Harmonic phasor measurement based on a cosine flat-top window[J]. Power System Protection and Control, 2023, 51(1): 139-147.
[22]
IEEE/IEC. Measuring relays and protection equipment-part 118-1: Synchrophasor for power systems-measurements: IEC/IEEE 60255-118-1[S]. USA: IEEE, 2018.

基金

国网安徽省电力有限公司淮南供电公司科技项目(B312F0230006)

PDF(4775 KB)

Accesses

Citation

Detail

段落导航
相关文章

/