结合电-热-氢储能的综合能源站多时间尺度优化运行

杨佳奇,张顺禹,高飒,单彬彬,王绍琨,宁爱华,周振玲,孟祥睿,吴迪,靳光亚

分布式能源 ›› 2024, Vol. 9 ›› Issue (2) : 48-62.

PDF(21481 KB)
PDF(21481 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (2) : 48-62. DOI: 10.16513/j.2096-2185.DE.2409206
学术研究

结合电-热-氢储能的综合能源站多时间尺度优化运行

作者信息 +

Multi-Time Scale Optimal Operation of Integrated Energy Station Combined With Electricity-Heat-Hydrogen Energy Storage

Author information +
文章历史 +

摘要

多元储能是提高综合能源系统可再生能源消纳水平的有效途径,然而,随着耦合储能设备的增多,系统复杂程度增大,由此所带来的系统运行不稳定、能效低等问题制约着综合能源系统发展。因此,提出将储电、储热、储氢集成到综合能源系统中,并开展多时间尺度优化的研究。从构建系统模型到提出日前优化调度、日内滚动优化、实时调整多时间尺度优化方案,充分发挥多元储能优势,解决源荷不确定性对系统的影响。运行结果可见,储电共计调整12.421 99 MW不平衡电功率,社区可再生能源消纳水平提升0.42%,购电成本降低3.5%,碳税降低1.5%。这表明提出的多时间尺度优化运行方法,通过灵活调整各设备出力,使系统运行更加平稳,提高了系统的稳定性与可再生能源消纳水平。

Abstract

Multi-energy storage is an effective way to improve the renewable energy consumption level of integrated energy system. However, with the increase of coupled energy storage equipment, the complexity of the system increases. Unstable operation and low energy efficiency caused by the complexity and uncertainty of the system have restricted the development of integrated energy system. Therefore, this paper proposes to integrate electricity storage, heat storage and hydrogen storage into the integrated energy system, and researches on multi-timescale optimization. From the construction of the system model to proposing multi-timescale optimization schemes such as day-ahead optimal scheduling, intra-day rolling optimization, and real-time adjustment, the advantages of multi-energy storage are fully utilized to solve the impact of source-load uncertainty on the system. The results show that the total power storage is adjusted to 12.421 99 MW unbalanced power, the community renewable energy consumption level is increased by 0.42%, the electricity purchase cost is reduced by 3.5%, and the carbon tax is reduced by 1.5%. This shows that the proposed multi-timescale optimal operation method makes the system run more smoothly by flexibly adjusting the output of each device, and improves the stability of the system and the level of renewable energy consumption.

关键词

多元储能 / 多时间尺度 / 综合能源系统 / 运行优化

Key words

multi-energy storage / multi-timescale / integrated energy system / operation optimization

引用本文

导出引用
杨佳奇, 张顺禹, 高飒, . 结合电-热-氢储能的综合能源站多时间尺度优化运行[J]. 分布式能源. 2024, 9(2): 48-62 https://doi.org/10.16513/j.2096-2185.DE.2409206
Jiaqi YANG, Shunyu ZHANG, Sa GAO, et al. Multi-Time Scale Optimal Operation of Integrated Energy Station Combined With Electricity-Heat-Hydrogen Energy Storage[J]. Distributed Energy Resources. 2024, 9(2): 48-62 https://doi.org/10.16513/j.2096-2185.DE.2409206
中图分类号: TK01; TM73   

参考文献

[1]
International Renewable Energy Agency. Global renewables outlook: Energy transformation 2050[EB/OL]. (2020-08-01)[2023-02-02].
[2]
中国建筑节能协会,2022年度中国城乡建设领域碳排放系列研究报告[EB/OL]. (2023-01-04)[2023-02-02].
[3]
REN H, JIANG Z, WU Q, et al. Integrated optimization of a regional integrated energy system with thermal energy storage considering both resilience and reliability[J]. Energy, 2022, 261: 125333.
[4]
杨滢,杨晓雷,项中明,等. 参与一次调频储能型风电场的交流外送振荡特性分析[J]. 智慧电力2023, 51(9): 105-112.
YANG Ying, YANG Xiaolei, XIANG Zhongming, et al. Oscillation characteristic analysis of wind farm with energy storage participating primary frequency control[J]. Smart Power, 2023, 51(9): 105-112.
[5]
傅旭,王莹玉,张雨津. 新疆电网调峰需求及储能电源配置[J]. 分布式能源2022, 7(5): 63-68.
FU Xu, WANG Yingyu, ZHANG Yujin. Peak regulating demand and energy storage power supply configuration of Xinjiang power grid[J]. Distributed Energy, 2022, 7(5): 63-68.
[6]
ZHAO D, XIA Z, GUO M, et al. Capacity optimization and energy dispatch strategy of hybrid energy storage system based on proton exchange membrane electrolyzer cell[J]. Energy Conversion and Management, 2022, 272: 116366.
[7]
王成山,吕超贤,李鹏,等. 园区型综合能源系统多时间尺度模型预测优化调度[J]. 中国电机工程学报2019, 39(23): 6791-6803, 7093.
WANG Chengshan, Chaoxian, LI Peng, et al. Multiple time-scale optimal scheduling of community integrated energy system based on model predictive control[J]. Proceedings of the CSEE, 2019, 39(23): 6791-6803, 7093.
[8]
汤翔鹰,胡炎,耿琪,等. 考虑多能灵活性的综合能源系统多时间尺度优化调度[J]. 电力系统自动化2021, 45(4): 81-90.
TANG Xiangying, HU Yan, GENG Qi, et al. Multi-time-scale optimal scheduling of integrated energy system considering multi-energy flexibility[J]. Automation of Electric Power Systems, 2021, 45(4): 81-90.
[9]
徐健玮,马刚,高丛,等. 基于风光场景生成的综合能源系统日前-日内优化调度[J]. 分布式能源2022, 7(4): 18-27.
XU Jianwei, MA Gang, GAO Cong, et al. Day-ahead and intra day optimal scheduling of integrated energy systems based on scenario generation[J]. Distributed Energy, 2022, 7(4): 18-27.
[10]
FANG X, DONG W, WANG Y, et al. Multiple time-scale energy management strategy for a hydrogen-based multi-energy microgrid[J]. Applied Energy, 2022, 328: 120195.
[11]
JANI A, KARIMI H, JADID S. Multi-time scale energy management of multi-microgrid systems considering energy storage systems: A multi-objective two-stage optimization framework[J]. Journal of Energy Storage, 2022, 51: 104554.
[12]
LI P, WANG Z, WANG J, et al. A multi-time-space scale optimal operation strategy for a distributed integrated energy system[J]. Applied Energy, 2021, 289: 116698
[13]
LIU H, ZHAO X, LI G, et al. Investigation of a novel separately-configured micro-thermoelectric cooler to enabling extend application scope[J]. Applied Energy, 2022, 306: 117941.
[14]
GABRIELLI P, GAZZANI M, MAZZOTTO M. Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment[J]. Applied Energy, 2018, 221: 557-575.
[15]
LI B, ROCHE R, PAIRE D, et al. Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation[J]. Applied Energy, 2017, 205: 1244-1259.
[16]
E J, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: 121822.
[17]
LI B, MIAO H, LI J. Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology[J]. Applied Energy, 2021, 283: 116303.
[18]
LI H, ZHANG C, SUN B. Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages[J]. Energy, 2021, 227: 120522
[19]
YANG H, LI M, JIANG Z, et al. Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response[J]. IEEE Access, 2020, 8: 5080-5090.
[20]
LI P, ZHANG F, MA X, et al. Multi-time scale economic optimization dispatch of the park integrated energy system[J]. Frontiers in Energy Research, 2021, 9: 743619.
[21]
PU Y, LI Q, ZOU X, et al. Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage[J]. Applied Energy, 2021, 302: 117542.
[22]
WEN X, SUN B, GU B, et al. Multi-time scale optimal scheduling model of wind and hydrogen integrated energy system based on carbon trading[J]. Processes, 2023, 11(2): 344.
[23]
CHENG Z, JIA D, LI Z, et al. Multi-time scale dynamic robust optimal scheduling of CCHP microgrid based on rolling optimization[J]. International Journal of Electrical Power & Energy Systems, 2022, 139: 107957.
[24]
WANG Z, TAO H, CAI W, et al. Study on the multitime scale rolling optimization operation of a near-zero energy building energy supply system[J]. Energy Conversion and Management, 2022, 270: 116255.

基金

国网北京市电力公司管理科技项目(520216220003)

PDF(21481 KB)

Accesses

Citation

Detail

段落导航
相关文章

/