考虑需求响应的光热电站热电联供型微网分层优化调度

左超文,王樊云,陈洁

分布式能源 ›› 2024, Vol. 9 ›› Issue (2) : 63-73.

PDF(9599 KB)
PDF(9599 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (2) : 63-73. DOI: 10.16513/j.2096-2185.DE.2409207
应用技术

考虑需求响应的光热电站热电联供型微网分层优化调度

作者信息 +

Hierarchical Optimization Scheduling of Combined Heat and Power Microgrid for Photothermal Power Station Considering Demand Response

Author information +
文章历史 +

摘要

针对光热电站热电联供微电网的优化调度问题,提出考虑需求响应、光热电站和电加热器相互协调配合的分层优化调度模型。在上层模型中,使用移动边界法对负荷曲线进行划分,以可再生能源与负荷之间的差异最小化为目标来求解不同时段电价;下层模型以微网调度成本最小为目标进行调度优化。考虑到仅靠风电和光伏不能满足负荷需求等情况,还需对光热电站和可控电源进行调节调度,建立一个基于混合整数线性规划的经济调度优化模型,该模型包含了光热电站、需求响应和电加热器之间的相互协调调度。通过实际案例分析,验证了所提方法的有效性和合理性。

Abstract

A hierarchical optimization scheduling model considering the coordination between demand response, the photothermal power stations, and electric heaters is proposed for the optimization scheduling problem of a cogeneration microgrid for a photothermal power station. In the upper-level model, the load curve is divided using the moving boundary method, and electricity prices are solved at different time periods with the goal of minimizing the difference between renewable energy and load. The lower-level model aims to minimize the scheduling cost of the microgrid. Considering the inability of wind and photovoltaic power alone to meet load demands, etc, the model also includes the regulation scheduling of the photothermal power station and controllable power sources. An economic dispatch optimization model based on mixed-integer linear programming is established, incorporating the coordinated scheduling of the photothermal power stations, demand response, and electric heaters. The effectiveness and rationality of the proposed method are verified through a practical case.

关键词

移动边界法 / 分时电价优化 / 光热电站 / 分层优化调度

Key words

moving boundary method / optimization of time-of-use electricity price / photothermal power station / hierarchical optimization scheduling

引用本文

导出引用
左超文, 王樊云, 陈洁. 考虑需求响应的光热电站热电联供型微网分层优化调度[J]. 分布式能源. 2024, 9(2): 63-73 https://doi.org/10.16513/j.2096-2185.DE.2409207
Chaowen ZUO, Fanyun WANG, Jie CHEN. Hierarchical Optimization Scheduling of Combined Heat and Power Microgrid for Photothermal Power Station Considering Demand Response[J]. Distributed Energy Resources. 2024, 9(2): 63-73 https://doi.org/10.16513/j.2096-2185.DE.2409207
中图分类号: TK01; TM73   

参考文献

[1]
周天舒,迟东训,艾明晔. 双碳背景下可再生能源面临的挑战及对策建议[J]. 宏观经济管理2022(7): 59-65.
ZHOU Tianshu, CHI Dongxun, AI Mingye. Challenges and strategy suggestions for renewable energy under the dual-carbon background[J]. Macroeconomic Management, 2022(7): 59-65.
[2]
LIU Jiejie, LI Yao, MA Yanan, et al. Coordinated energy management for integrated energy system incorporating multiple flexibility measures of supply and demand sides: A deep reinforcement learning approach[J]. Energy Conversion and Management, 2023, 297: 117728.
[3]
孙文文,何国庆. 基于能流图和碳流图的我国能源结构转型分析及展望[J]. 分布式能源2022, 7(4): 10-17.
SUN Wenwen, HE Guoqing. Analysis and prospect of China's energy structure transformation based on energy flow chart and carbon flow chart[J]. Distributed Energy, 2022, 7(4): 10-17.
[4]
郭峰,王悦,陆鑫,等. 含高比例风电的新型电力系统的经济运行及储能配置[J]. 智慧电力2023, 51(11): 76-82.
GUO Feng, WANG Yue, LU Xin, et al. Economic operation and energy storage configuration of new power system with high penetration of wind power[J]. Smart Power, 2023, 51(11): 76-82.
[5]
高骞,杨俊义,洪宇,等. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术2022, 43(6): 851-859.
GAO Qian, YANG Junyi, HONG Yu, et al. Research on digital transformation architecture and path of power grid development planning business under new power system blueprint[J]. Power Generation Technology, 2022, 43(6): 851-859.
[6]
夏晨阳,杨子健,周娟,等. 基于新型电力系统的储能技术研究[J]. 内蒙古电力技术2022, 40(4): 3-12.
XIA Chenyang, YANG Zijian, ZHOU Juan, et al. Research of energy storage technology based on new power system[J]. Inner Mongolia Electric Power, 2022, 40(4): 3-12.
[7]
李学峰,李国庆,李晓飞,等. 考虑风电不确定性与电池损耗的储能电站鲁棒规划方法[J/OL]. 电力系统及其自动化学报:1-11[2023-06-01].
LI Xuefeng, LI Guoqing, LI Xiaofei, et al. Robust planning method for energy storage station considering wind power uncertainty and battery loss[J/OL]. Proceedings of the CSU-EPSA: 1-11[2023-06-01].
[8]
LI Yaowang, YAO Fuxing, ZHANG Shixu, et al. An optimal dispatch model of adiabatic compressed air energy storage system considering its temperature dynamic behavior for combined cooling, heating and power microgrid dispatch[J]. Journal of Energy Storage, 2022, 51: 104366.
[9]
马静,黄韦博,聂珍存,等. 基于新能源快速调节的孤岛微网弹性恢复策略[J/OL]. 电网技术:1-12[2023-06-01].
MA Jing, HUANG Weibo, NIE Zhencun, et al. Elastic recovery strategy of island micro-network based on rapid adjustment of new energy[J/OL]. Power System Technology: 1-12[2023-06-01].
[10]
贠韫韵,张珍珍,陈钊,等. 考虑光热电站参与的新能源热电联供型微网运行优化[J]. 可再生能源2020, 38(7): 922-928.
YUN Yunyun ZHANG Zhenzhen CHEN Zhao, et al. Operation dispatch of combined heat and power micro-grid with new energy considering the participation of concentratingsolar power plant[J]. Renewable Energy Resources, 2020, 38(7): 922-928.
[11]
谢雨龙,罗逸飏,李智威,等. 考虑微网新能源经济消纳的共享储能优化配置[J]. 高电压技术2022, 48(11): 4403-4413.
XIE Yulong, LUO Yiyang, LI Zhiwei, et al. Optimal allocation of shared energy storage considering the economic consumption of microgrid new energy[J]. High Voltage Engineering, 2022, 48(11): 4403-4413.
[12]
李冰洁,袁晓昀,史静,等. 综合能源系统电气热多能量流建模及优化[J/OL]. 上海交通大学学报:1-29[2023-06-01].
LI Bingjie, YUAN Xiaoyun, SHI Jing, et al. Energy flow modeling and optimization of electric-gas-thermal integrated energy system[J/OL]. Journal of Shanghai Jiaotong University: 1-29[2023-06-01].
[13]
LI Y, HU R. Exergy-analysis based comparative study of absorption refrigeration and electric compression refrigeration in CCHP systems[J]. Applied Thermal Engineering, 2016, 93: 1228-1237.
[14]
王成山,洪博文,郭力,等. 冷热电联供微网优化调度通用建模方法[J]. 中国电机工程学报2013, 33(31): 26-33, 3.
WANG Chengshan, HONG Bowen, GUO Li, et al. A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2013, 33(31): 26-33, 3.
[15]
程杉,黄天力,魏荣宗. 含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度[J]. 电力系统自动化2019, 43(5): 30-38.
CHEN Shan, HUANG Tianli, WEI Rongzong, Multi-time-scale optimal scheduling of CCHP microgrid with ice-storage air-conditioning[J]. Automation of Electric Power Systems, 2019, 43(5): 30-38.
[16]
欧阳翰,吕林,刘俊勇,等. 考虑可再生能源不确定性的热电联供型微网随机鲁棒经济调度[J]. 电力建设2022, 43(1): 19-28.
OUYANG Han, Lin, LIU Junyong, et al. Stochastic robust economic dispatch of combined heat and power microgrid considering renewable energy uncertainty[J]. Electric Power Construction, 2022, 43(1): 19-28.
[17]
齐志远,张如意,李晓文,等. 热电联供微电网动态修正的分层优化调度[J]. 中国电机工程学报2022, 42(3): 968-980.
QI Zhiyuan, ZHANG Ruyi, LI Xiaowen, et al. Hierarchical optimal scheduling with dynamic correction of micro-grid combined heat and power[J]. Proceedings of the CSEE, 2022, 42(3): 968-980.
[18]
王佳颖,史俊祎,文福拴,等. 计及需求响应的光热电站热电联供型微网的优化运行[J]. 电力系统自动化2019, 43(1): 176-185.
WANG Jiaying, SHI Junyi, WEN Fushuan, et al. Optimal operation of CHP microgrid with concentrating solar power plants considering demand response[J]. Automation of Electric Power Systems, 2019, 43(1): 176-185.
[19]
张金平,周强,王定美,等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源2023, 45(2): 44-52.
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2): 44-52.
[20]
CHEN Runze, SUN Hongbin, GUO Qinglai, et al. Reducing generation uncertainty by integrating CSP with wind power: An adaptive robust optimization-based analysis[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 583-594.
[21]
陈婧. 含光热电站的热电联供型微网鲁棒经济调度研究[D]. 南昌:华东交通大学,2021.
CHEN Jing. Research on robust economic dispatch of combined heat and power microgrid with solar power station[D]. Nanchang: East China Jiaotong University, 2021.
[22]
LI M Y, LENZEN M, YOUSEFZADEH M, et al. The roles of biomass and CSP in a 100% renewable electricity supply in Australia[J]. Biomass and Bioenergy, 2020, 143: 105802.
[23]
许玲丽,高岩. 含光热电站的热电联供型微网储热容量双层优化配置[J]. 上海理工大学学报2023, 45(2): 171-179.
XU Lingli, GAO Yan. Bi-level optimal capacity configuration of thermal energy storage for combined heat and power microgrid with concentrating solar power plant[J]. Journal of University of Shanghai for Science and Technology, 2023, 45(2): 171-179.
[24]
晋宏杨,孙宏斌,郭庆来,等. 含大规模储热的光热电站—风电联合系统多日自调度方法[J]. 电力系统自动化2016, 40(11): 17-23.
JIN Hongyang, SUN Hongbin, GUO Qinglai, et al. Multi day self-scheduling method for combined system of CSP plants and wind power with large-scale thermal energy storage contained[J]. Automation of Electric Power Systems, 2016, 40(11): 17-23.
[25]
LI X, WU X, GUI D, et al. Power system planning based on CSP-CHP system to integrate variable renewable energy[J]. Energy, 2021, 232: 121064.
[26]
周灿煌,郑杰辉,荆朝霞,等. 面向园区微网的综合能源系统多目标优化设计[J]. 电网技术2018, 42(6): 1687-1697.
ZHOU Canhuang, ZHENG Jiehui, JING Zhaoxia, et al. Multi-objective optimal design of integrated energy system for park-level microgrid[J]. Power System Technology, 2018, 42(6): 1687-1697.
[27]
戴志辉,陈冰研,谢军,等. 含多微网的主动配电网分层调度策略[J]. 电力系统保护与控制2018, 46(18): 121-127.
DAI Zhihui, CHEN Bingyan, XIE Jun, et al. Hierarchical scheduling strategy for active distribution network with multi-microgrids[J]. Power System Protection and Control, 2018, 46(18): 121-127.
[28]
陈莉伟,姚方,马光辉. 考虑源荷交互的独立微电网分层优化调度[J]. 电网与清洁能源2021, 37(9): 83-91.
CHEN Liwei, YAO Fang, MA Guanghui. Hierarchical optimal scheduling of the independent microgrid considering source-charge interaction[J]. Power System and Clean Energy, 2021, 37(9): 83-91.
[29]
郝志方,安佳坤,侯若松,等. 基于主从博弈的差异化建筑集群与微网协同优化调度方法[J/OL]. 电力系统及其自动化学报:1-12[2023-12-01].
HAO Zhifang, AN Jiakun, HOU Ruosong, et al. A stackelberg game based coordinated optimization method for heterogeneous building aggregations and a microgird[J/OL]. Proceedings of the CSU-EPSA: 1-12[2023-12-01].
[30]
李昊,刘畅,苗博,等. 考虑冷热电互补及储能系统的多园区综合能源系统协调优化调度[J]. 储能科学与技术2022, 11(5):1482-1491.
LI Hao, LIU Chang, MIAO Bo, et al. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems[J]. Energy Storage Science and Technology 2022, 11(5): 1482-1491.
[31]
张大海,贠韫韵,王小君,等. 考虑广义储能及光热电站的电热气互联综合能源系统经济调度[J]. 电力系统自动化2021, 45(19): 33-42.
ZHANG Dahai, YUN Yunyun, WANG Xiaojun, et al. Economic dispatch of integrated electricity-heat-gas energy system considering generalized energy storage and concentrating solar power plant[J]. Automation of Electric Power Systems, 2021, 45(19): 33-42.

PDF(9599 KB)

Accesses

Citation

Detail

段落导航
相关文章

/