颗粒堆积床显热储能技术概述

来振亚,侯成龙,陈嘉映,国旭涛,韩高岩,丁历威,吕洪坤

分布式能源 ›› 2024, Vol. 9 ›› Issue (3) : 12-20.

PDF(12943 KB)
PDF(12943 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (3) : 12-20. DOI: 10.16513/j.2096-2185.DE.2409302
综述

颗粒堆积床显热储能技术概述

作者信息 +

Overview of Sensible Heat Energy Storage Technology for Particle Packed Bed

Author information +
文章历史 +

摘要

颗粒堆积床显热储能技术具有系统构造简单、建造和运维成本较低、运行温度区间广等优点,在新能源消纳、工业余热利用和清洁供热等方面具有巨大的应用潜力。首先,从储能材料、储能容器两方面对颗粒堆积床显热储能技术进行介绍,概述颗粒堆积床显热储能领域的研究进展;其次,总结分析各设计参数对堆积床气流阻力特性、储热特性、热分层特性的影响,对可回收固体废弃物作为新型储能材料进行技术经济可行性分析,旨在为颗粒堆积床显热储能系统的优化设计提供参考。研究结果表明:床层的热容量是影响堆积床储能特性的最关键因素;与现有储能材料相比,将固体废弃物回收再利用为堆积储能材料具有较为明显的优势。

Abstract

Sensible heat energy storage technology of particle packed bed has the advantages of simple system structure, low construction and operation costs, and wide operating temperature range. It has huge application potential in new energy consumption, industrial waste heat utilization, and clean heating. This article first introduces sensible heat energy storage technology of particle packed bed from two aspects: energy storage materials and energy storage containers, and summarizes the latest research progress in this field. It summarizes and analyzes the influence of various design parameters on the airflow resistance characteristics, heat storage characteristics, and thermal stratification characteristics of the packed bed. The techno-economic viability analysis of recyclable solid waste as a new type of energy storage material is conducted, aiming to provide reference for the optimization design of particle packed bed sensible heat storage systems. The research results indicate that the heat capacity of the bed is the most critical factor affecting the energy storage characteristics of the packed bed. Compared with existing energy storage materials, recycling and reusing solid waste into packed energy storage materials has significant relative advantages.

关键词

颗粒堆积床 / 显热储能 / 储热特性 / 气流阻力 / 热分层

Key words

particle packed bed / sensible heat energy storage / heat storage characteristics / airflow resistance / thermal stratification

引用本文

导出引用
来振亚, 侯成龙, 陈嘉映, . 颗粒堆积床显热储能技术概述[J]. 分布式能源. 2024, 9(3): 12-20 https://doi.org/10.16513/j.2096-2185.DE.2409302
Zhenya LAI, Chenglong HOU, Jiaying CHEN, et al. Overview of Sensible Heat Energy Storage Technology for Particle Packed Bed[J]. Distributed Energy Resources. 2024, 9(3): 12-20 https://doi.org/10.16513/j.2096-2185.DE.2409302
中图分类号: TK02   

参考文献

[1]
姜竹,邹博杨,丛琳,等. 储热技术研究进展与展望[J]. 储能科学与技术2022, 11(9): 2746-2771.
JIANG Zhu, ZOU Boyang, CONG Lin, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
[2]
徐运飞,吴水木,李英杰. 面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J]. 发电技术2022, 43(5): 740-747.
XU Yunfei, WU Shuimu, LI Yingjie. Research progress of CaO-CO2 thermochemical heat storage technology for concentrated solar power plant[J]. Power Generation Technology, 2022, 43(5): 740-747.
[3]
王依妍,陈景文. 基于ISSA的光储微网混合储能容量优化配置[J]. 智慧电力2023, 51(4): 23-29, 53.
WANG Yiyan, CHEN Jingwen. ISSA-based optimal configuration of optical storage microgrid hybrid energy storage capacity[J]. Smart Power, 2023, 51(4): 23-29, 53.
[4]
刘大正,崔咏梅,赵飞. 新型储能商业化运行模式分析与发展建议[J]. 分布式能源2022, 7(5): 46-55.
LIU Dazheng, CUI Yongmei, ZHAO Fei. Operating mode analysis and developmental suggestions of new energy storage in commercial application scenarios[J]. Distributed Energy, 2022, 7(5): 46-55.
[5]
AMIRI L, ERMAGAN H, KURNIA J C, et al. Progress on rock thermal energy storage (RTES): A state of the art review[J]. Energy science & engineering, 2024, 12(2): 410-437.
[6]
ACHKARI O, EL FADAR A. Latest developments on TES and CSP technologies: Energy and environmental issues, applications and research trends[J]. Applied Thermal Engineering, 2020, 167(1): 114806.
[7]
GAUTAM A, SAINI R P. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956.
[8]
ESENCE T, BRUCH A, MOLINA S, et al. A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems[J]. Solar Energy, 2017, 153: 628-654.
[9]
COLLINS L. Siemens Gamesa launches revolutionary thermal storage pilot[EB/OL]. (2019-06-12)[2024-03-25].
[10]
Brenmiller Energy. BGen™ brenmiller energy industrial waste heat [EB/OL]. [2024-03-25].
[11]
ZHOU H, LAI Z, CEN K. Experimental study on energy storage performances of packed bed with different solid materials[J]. Energy, 2022, 246: 123416.
[12]
LAI Z, ZHOU H, ZHOU M, et al. Experimental study on storage performance of packed bed thermal energy storage system using sintered ore particl[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111654.
[13]
BATTISTI F G, DE ARAUJO PASSOS L A, DA SILVA A K. Performance mapping of packed-bed thermal energy storage systems for concentrating solar-powered plants using supercritical carbon dioxide[J]. Applied Thermal Engineering, 2021, 183, 116032.
[14]
BATTISTI F G, DE ARAUJO PASSOS L A, DA SILVA A K. Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage[J]. Applied Energy, 2022, 314, 118913.
[15]
SCHWARZMAYR P, BIRKELBACH F, WALTER H, et al. Packed bed thermal energy storage for waste heat recovery in the iron and steel industry: A cold model study on powder hold-up and pressure drop[J]. Journal of Energy Storage. 2024, 75: 109735.
[16]
LIN L, WANG L, BAI Y, et al. Heat transfer characteristics of the innovative spray-type packed bed thermal energy storage: An experimental study[J]. Journal of Energy Storage, 2023, 73: 108573.
[17]
ZHAO B, CHENG M, LIU C, et al. System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power[J]. Applied Energy, 2018, 226: 225-239.
[18]
AGRAWAL P, GAUTAM A, KUNWAR A, et al. Performance assessment of heat transfer and friction characteristics of a packed bed heat storage system embedded with internal grooved cylinders[J]. Solar Energy, 2018, 161: 148-158.
[19]
GAUTAM A, SAINI R P. Experimental investigation of heat transfer and fluid flow behavior of packed bed solar thermal energy storage system having spheres as packing element with pores[J]. Solar Energy, 2020, 204: 530-541.
[20]
来振亚. 颗粒堆积床烧结及储能特性研究[D]. 杭州:浙江大学,2022.
LAI Zhenya. Investigation of sintering and energy storage characteristics of particle packed bed[D]. Hangzhou: Zhejiang University, 2022.
[21]
ALMENDROS-IBÁÑEZ J A, FERNÁNDEZ-TORRIJOS M, DÍAZ-HERAS M, et al. A review of solar thermal energy storage in beds of particles: Packed and fluidized beds[J]. Solar Energy, 2019, 192: 193-237.
[22]
LIAO Z, ZHAO G, XU C, et al. Efficiency analyses of high temperature thermal energy storage systems of rocks only and rock-PCM capsule combination[J]. Solar Energy, 2018, 162: 153-164.
[23]
AMEEN M T, MA Z, SMALLBONE A, et al. Experimental study and analysis of a novel layered packed-bed for thermal energy storage applications: A proof of concept[J]. Energy Conversion and Management, 2023, 277: 116648.
[24]
TREVISAN S, GUEDEZ R. Design optimization of an innovative layered radial-flow high-temperature packed bed thermal energy storage[J]. Journal of Energy Storage, 2024, 83: 110767.
[25]
ZANGANEH G, PEDRETTI A, ZAVATTONI S, et al. Packed-bed thermal storage for concentrated solar power-Pilot-scale demonstration and industrial-scale design[J]. Solar Energy, 2012, 86(10): 3084-3098.
[26]
GERSTLE W H, SCHROEDER N R, MCLAUGHLIN L P, et al. Experimental testing and computational modeling of a radial packed bed for thermal energy storage[J]. Solar Energy, 2023, 264: 111993.
[27]
TREVISAN S, WANG W, GUEDEZ R, et al. Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage[J]. Applied Energy, 2022, 311: 118672.
[28]
KNOBLOCH K, MUHAMMAD Y, COSTA M S, et al. A partially underground rock bed thermal energy storage with a novel air flow configuration[J]. Applied Energy, 2022, 315: 118931.
[29]
ODENTHAL C, STEINMANN W D, ZUNFT S. Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications-Part I: Experimental investigation of the plant[J]. Applied Energy, 2020, 263: 114573.
[30]
ODENTHAL C, STEINMANN W D, ZUNFT S. Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications-Part II: Numerical investigation[J]. Applied Energy, 2020, 263: 114576.
[31]
SOPRANI S, MARONGIU F, CHRISTENSEN L, et al. Design and testing of a horizontal rock bed for high temperature thermal energy storage[J]. Applied Energy, 2019, 251: 113345.
[32]
WANG Y, WANG Z, YUAN G. Control strategy effect on storage performance for packed-bed thermal energy storage[J]. Solar Energy, 2023, 253: 78-84.
[33]
ALY S L, EL-SHARKAWY A I. Effect of storage medium on thermal properties of packed beds[J]. Heat Recovery Systems & CHP, 1990, 10(5-6): 509-517.
[34]
CALDERON-VASQUEZ I, SEGOVIA V, CARDEMIL J M, et al. Assessing the use of copper slags as thermal energy storage material for packed-bed systems[J]. Energy, 2021, 227: 120370.
[35]
EDDEMANI A, BAMMOU L, TISKATINE R, et al. Evaluation of the thermal performance of the air-rock bed solar energy storage system[J]. International Journal of Ambient Energy, 2021, 42(15): 1-29.
[36]
NEMŚ M, NEMŚ A, GĘBAROWSKA K. The influence of the shape of granite on the heat storage process in a rock bed[J]. Energies, 2020, 13(21): 5662-5677.
[37]
TUTTLE J F, WHITE N, MOHAMMADI K, et al. A novel dynamic simulation methodology for high temperature packed-bed thermal energy storage with experimental validation[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100888.
[38]
LAI Z, CEN K, ZHOU H. Applicability of coal slag for application as packed bed thermal energy storage materials[J]. Solar Energy, 2022, 236: 733-742.
[39]
ORTEGA-FERNANDEZ I, CALVET N, GIL A, et al. Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material[J]. Energy, 2015, 89: 601-609.
[40]
AGALIT H, ZARI N, MAAROUFI M. Suitability of industrial wastes for application as high temperature thermal energy storage (TES) materials in solar tower power Plants: A comprehensive review[J]. Solar Energy, 2020, 208: 1151-1165.
[41]
PY X, CALVET N, OLIVES R, et al. Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants[J]. Journal of Solar Energy Engineering, 2011, 133(3): 031008-031015.
[42]
ASHBY M F. Materials selection in mechanical design[M]. Oxford: Elsevier Butterworth-Heinemann, 2005.
[43]
FERNÁNDEZ A I, MARTÍNEZ M, SEGARRA M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729.

基金

国网浙江省电力有限公司科技项目(B311DS230006)

PDF(12943 KB)

Accesses

Citation

Detail

段落导航
相关文章

/