基于ADMM的完全去中心化P2P能源交易机制

丁琦,高岩

分布式能源 ›› 2024, Vol. 9 ›› Issue (3) : 31-38.

PDF(2180 KB)
PDF(2180 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (3) : 31-38. DOI: 10.16513/j.2096-2185.DE.2409304
学术研究

基于ADMM的完全去中心化P2P能源交易机制

作者信息 +

Fully Decentralized P2P Energy Trading Mechanism Based on ADMM

Author information +
文章历史 +

摘要

为研究完全去中心化的点对点(peer-to-peer,P2P)能源市场中产消者的最优清算问题,重点解决产消者内部的协作和在P2P市场中实现社会福利最大化的挑战,采用了一种新的平行、分布式的交替方向乘子法(alternating direction method of multipliers,ADMM),推导出P2P市场的交易机制。该方法考虑每个产消者的效用函数,并引入分布式发电机(distributed generator,DG)和电能存储系统(battery energy storage system,BESS)。算法中每个产消者通过迭代与其相邻的产消者同步交换少量信息,并优化以满足不同的需求。通过对6-peers系统的数值验证,证明了所提出方法的有效性。与基于池的交易机制相比,完全去中心化的P2P问题在单位时间内交易电量提升了160%,社会福利从-9.47元增加到32.43元。

Abstract

In order to study the optimal clearing problem of consumers in a fully decentralized peer-to-peer (P2P) energy market, this paper focused on solving the challenges of cooperation among consumers and maximizing social welfare in P2P markets. A new parallel and distributed alternating direction method of multipliers (ADMM) is adopted to derive the trading mechanism of P2P market. This method considers the utility function of each prosumer, and introduces a distributed generator (DG) and a battery energy storage system (BESS). In the algorithm, each prosumer synchronously exchanges a small amount of information with its neighboring prosumers through iteration and optimizes to meet different requirements. The effectiveness of the proposed method is demonstrated by numerical verification of the 6-peers system. Compared with the pool-based trading mechanism, the fully decentralized P2P problem increases the transaction power by 160% per unit time, and the social welfare increases from -9.47 yuan to 32.43 yuan.

关键词

点对点(P2P)能源系统 / 双边交易 / 交替方向乘子法(ADMM) / 社会福利最大化 / 实时电价

Key words

peer-to-peer (P2P) energy systems / bilateral transactions / alternating direction method of multipliers (ADMM) / social welfare maximization / real-time pricing

引用本文

导出引用
丁琦, 高岩. 基于ADMM的完全去中心化P2P能源交易机制[J]. 分布式能源. 2024, 9(3): 31-38 https://doi.org/10.16513/j.2096-2185.DE.2409304
Qi DING, Yan GAO. Fully Decentralized P2P Energy Trading Mechanism Based on ADMM[J]. Distributed Energy Resources. 2024, 9(3): 31-38 https://doi.org/10.16513/j.2096-2185.DE.2409304
中图分类号: TM732   

参考文献

[1]
SOTO E A, BOSMAN L B, WOLLEGA E, et al. Peer-to-peer energy trading: A review of the literature[J]. Applied Energy, 2021, 283: 116268.
[2]
高岩. 基于需求侧管理实时电价优化方法综述[J]. 上海理工大学学报2022, 44(2): 103-111, 121.
GAO Yan. A review on real-time electricity price optimization methods based on demand side management[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(2): 103-111, 121.
[3]
高岩. 智能电网实时电价社会福利最大化模型的研究[J]. 中国管理科学2020, 28(10): 201-209.
GAO Yan. The social welfare maximization model of real-time pricing for smart grid[J]. Chinese Journal of Management Science, 2020, 28(10): 201-209.
[4]
YANG Y, CHEN Y, HU G, et al. Optimal network charge for peer-to-peer energy trading: A grid perspective[J]. IEEE Transactions on Power Systems, 2022, 38(3): 2398-2410.
[5]
王宇倩,李军祥,徐敏. 区块链框架下基于前景理论的微网分布式能源协同优化[J]. 系统工程理论与实践2022, 42(9): 2551-2564.
WANG Yuqian, LI Junxiang, XU Min. Collaborative optimization of distributed energy resources in microgrid based on prospect theory under the framework of blockchain[J]. Systems Engineering Theory & Practice, 2022, 42(9): 2551-2564.
[6]
李军祥,王宇倩,何建佳,等. 基于区块链的微电网电力市场电价与电量动态博弈[J]. 电力系统自动化2021, 45(17): 11-19.
LI Junxiang, WANG Yuqian, HE Jianjia, et al. Blockchain-based dynamic game of electricity price and power for microgrid electricity market[J]. Automation of Electric Power Systems, 2021, 45(17): 11-19.
[7]
ZHOU K, CHU Y, HU R. Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading[J]. Energy, 2023, 285: 129436.
[8]
李军祥,王宇倩,孙权,等. 电力零售商引导下智能电网多方利益均衡策略[J]. 运筹与管理2022, 31(2): 209-215.
LI Junxiang, WANG Yuqian, SUN Quan, et al. Multi-interest balance strategy of smart grid guided by retailers[J]. Operations Research and Management Science, 2022, 31(2): 209-215.
[9]
LIU Y, WU L, LI J. A two-stage peer-to-peer energy trading model for distribution systems with participation of utility[J]. CSEE Journal of Power and Energy Systems, 2021, 7(5): 893-902.
[10]
王菁祺,高岩,吴志强,等. 计及负荷不确定性的强化学习实时定价策略[J]. 计算机应用研究2022, 39(9): 2640-2646, 2659.
WANG Jingqi, GAO Yan, WU Zhiqiang, et al. Real-time pricing strategy based on reinforcement learning with load uncertainty [J]. Application Research of Computers, 2022, 39 (9): 2640-2646, 2659.
[11]
NGUYEN D H. Optimal solution analysis and decentralized mechanisms for peer-to-peer energy markets[J]. IEEE Transactions on Power Systems, 2021, 36(2): 1470-1481.
[12]
SUTHAR S, CHERUKURI S H C, PINDORIYA N M. Peer-to-peer energy trading in smart grid: Frameworks, implementation methodologies, and demonstration projects[J]. Electric Power Systems Research, 2023, 214: 108907.
[13]
许中阳,宋晓通. 含高比例清洁能源的微电网多目标优化调度策略[J]. 分布式能源2023, 8(2): 19-25.
XU Zhongyang, SONG Xiaotong. Multi-objective optimal scheduling strategy for microgrid with high permeability clean energy[J]. Distributed Energy, 2023, 8(2): 19-25.
[14]
李媛媛,李军祥,党亚峥,等. 基于KKT条件智能电网实时定价的光滑牛顿算法[J]. 系统科学与数学2020, 40(4): 646-656.
LI Yuanyuan, LI Junxiang, DANG Yazheng, et al. Smoothing newton algorithm for real-time pricing of smart grid based on KKT conditions[J]. Journal of System Science and Mathematical Science Chinese Series, 2020, 40(4): 646-656.
[15]
MALIK S, DUFFY M, THAKUR S, et al. A priority-based approach for peer-to-peer energy trading using cooperative game theory in local energy community[J]. International Journal of Electrical Power & Energy Systems, 2022, 137: 107865.
[16]
ESMAT A, DE VOS M, GHIASSI-FARROKHFAL Y, et al. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology[J]. Applied Energy, 2021, 282: 116123.
[17]
ZHENG B, WEI W, CHEN Y, et al. A peer-to-peer energy trading market embedded with residential shared energy storage units[J]. Applied Energy, 2022, 308: 118400.
[18]
ALSKAIF T, CRESPO-VAZQUEZ J L, SEKULOSKI M, et al. Blockchain-based fully peer-to-peer energy trading strategies for residential energy systems[J]. IEEE Transactions on Industrial Informatics, 2021, 18(1): 231-241.
[19]
YUAN G, GAO Y, YE B, et al. A bilevel programming approach for real-time pricing strategy of smart grid considering multi-microgrids connection[J]. International Journal of Energy Research, 2021, 45(7): 10572-10589.
[20]
XIA Y, XU Q, HUANG Y, et al. Peer-to-peer energy trading market considering renewable energy uncertainty and participants'individual preferences[J]. International Journal of Electrical Power & Energy Systems, 2023, 148: 108931.
[21]
ALSKAIF T, CRESPO-VAZQUEZ J L, SEKULOSKI M, et al. Blockchain-based fully peer-to-peer energy trading strategies for residential energy systems[J]. IEEE Transactions on Industrial Informatics, 2021, 18(1): 231-241.
[22]
NGUYEN D H, AZUMA S, SUGIE T. Novel control approaches for demand response with real-time pricing using parallel and distributed consensus-based ADMM[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7935-7945.
[23]
LIU Y, GOOI H B, XIN H. Distributed energy management for the multi-microgrid system based on ADMM[C]//2017 IEEE Power & Energy Society General Meeting, July 16-20, 2017, Chicago, IL, USA . IEEE, 2017: 1-5.
[24]
NGUYEN D H, NARIKIYO T, KAWANISHI M. Optimal demand response and real-time pricing by a sequential distributed consensus-based ADMM approach[J]. IEEE Transactions on Smart Grid, 2017, 9(5): 4964-4974.
[25]
DAS A, PEU S D, AKANDA M A M, et al. Peer-to-peer energy trading pricing mechanisms: towards a comprehensive analysis of energy and network service pricing (NSP) mechanisms to get sustainable enviro-economical energy sector[J]. Energies, 2023, 16(5): 2198.
[26]
李军祥,张同辉,屈德强,等. 基于区块链隐私保护的智能电网实时定价[J]. 上海理工大学学报2022, 44(2): 122-130.
LI Junxiang, ZHANG Tonghui, QU Deqiang, et al. Real-time pricing based on blockchain privacy protection of smart grid[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(2): 122-130.
[27]
吴志强,王菁祺,高岩. 实时电价的社会福利解析[J]. 中国管理科学2024, 32(3): 218-227.
WU Zhiqiang, WANG Jingqi, GAO Yan. Social welfare analysis of real-time pricing[J]. Chinese Journal of Management Science, 2024, 32(3): 218-227.
[28]
ZHANG L, GAO Y, ZHU H B, et al. Bi-level stochastic realtime pricing model in multi-energy generation system: A reinforcement learning approach[J]. Energy, 2022, 239: 121926.
[29]
胡健,于娣,张晓杰. 电力P2P交易中计及社会福利的产消者合作联盟[J]. 中国电机工程学报2024, 44(3): 960-971.
HU Jian, YU Di, ZHANG Xiaojie. Prosumer alliance in P2P transaction of electricity considering social welfare[J]. Proceedings of the CSEE, 2024, 44(3): 960-971.

基金

国家自然科学基金项目(72071130)

PDF(2180 KB)

Accesses

Citation

Detail

段落导航
相关文章

/