PDF(5231 KB)
PDF(5231 KB)
PDF(5231 KB)
海上盐雾环境对风力机翼型气动性能的影响
Influence of Sea Salt Spray Environment on Aerodynamic Performance of Wind Turbine Airfoil
为探究海上潮湿盐雾环境变化对海上风机翼型气动性能产生的影响,采用组分运输模型与离散相模型对海上盐雾环境进行环境模型建立和参数设定,结合壁面沉积模型用户自定义函数,以NACA4415翼型为研究对象进行数值模拟。研究发现:翼型的升阻力系数随着盐雾浓度的增加而增大,随着空气湿度的升高而减小;颗粒在翼型表面0.2~0.8弦长处均匀分布,在靠近前缘处沉积较少,尾缘沉积较多;速度的增加会降低颗粒的沉积率,翼型攻角升高会改变表面速度分布,影响翼型表面颗粒沉积率;空气湿度升高会减少盐雾颗粒在翼型表面的沉积量,在沉积量较多的区域降低更加明显,并且随着攻角的增大,湿度的影响逐渐减小。
In order to explore the influence of the change of wet salt spray environment on the aerodynamic performance of the offshore wind airfoil, the component transport model and discrete phase model were used to establish the environmental model and set the parameters of the offshore salt spray environment. Combined with the user-defined function of the wall deposition model, the numerical simulation was carried out on the NACA4415 airfoil. It is found that the lift resistance coefficient of airfoil increases with the increase of salt spray concentration and decreases with the increase of air humidity. The particles are evenly distributed on the surface of the airfoil at 0.2~0.8 chord, with less deposition near the leading edge and more deposition at the trailing edge. With the increase of velocity, the deposition rate of particles decreases. With the increase of airfoil attack angle, the surface velocity distribution changes and the deposition rate is affected. With the increase of air humidity, the deposition amount of salt spray particles on the airfoil surface is reduced, and the decrease is more obvious in the area with large deposition amount, and the influence of humidity decreases with the increase of the angle of attack.
salt spray environment / airfoil profile / aerodynamic performance / discrete phase model / deposition
| [1] |
许维凯. 海上风电发展趋势分析与探讨[J]. 资源节约与环保,2023(1): 140-143.
|
| [2] |
毛晓娥,李成良,任旺. 温度、海拔与湿度对叶片气动性能的影响[J]. 风能,2020(1): 96-100.
|
| [3] |
黄晖,殷华芳,章翔,等. 海上风电发电设施防盐雾措施讨论[J]. 中小企业管理与科技(下旬刊), 2017(6): 172-173.
|
| [4] |
高彦明,向利,陈川. 大气盐雾含量监测与影响因素研究[J]. 环境技术,2021, 39(5): 89-93.
|
| [5] |
尧瑶,韦桥斌,曾东,等. 南海湿热海上风电机组环境条件研究[J]. 环境技术,2023, 41(8): 49-54.
|
| [6] |
|
| [7] |
岳巍澎,刘燕,薛宇. 海上湿气对风力机叶片气动特性影响初探[J]. 机械工程学报,2017, 53(10): 151-159.
|
| [8] |
刘燕,岳巍澎. 海上湿气对翼型气动特性的影响初探[J]. 空气动力学学报,2016, 34(4): 541-547.
|
| [9] |
薛宇,刘燕. 海上湿气对风力机翼型及叶片气动性能影响研究[J]. 分布式能源,2016, 1(2): 21-27.
|
| [10] |
|
| [11] |
何平,胡丹梅,陈乃超. 海上风力机的数值模拟[J]. 可再生能源,2010, 28(4): 21-24.
|
| [12] |
|
| [13] |
|
| [14] |
文洮,陈春霖,王林柱,等. 降雨对风力机翼型气动性能的影响[J]. 辽宁工业大学学报(自然科学版), 2022, 42(1): 22-30.
|
| [15] |
倪艺铭,高艳婧,刘宏伟,等. 水沙环境对海流能机组水动性能的影响[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(4): 116-125.
|
| [16] |
李德顺,何婷,王清. 颗粒直径对风力机翼型动态失速特性的影响研究[J]. 太阳能学报,2023, 44(12): 207-213.
|
| [17] |
|
| [18] |
何婷. 风沙环境下风力机翼型动态失速特性研究[D]. 兰州:兰州理工大学,2020.
|
| [19] |
李焜林. 盐雾环境下风力机叶片翼型气动性能研究[D]. 长沙:长沙理工大学,2017.
|
| [20] |
马爱清,徐捷立. 考虑盐雾环境的雷击海上风机暂态过程数值模拟[J]. 电瓷避雷器,2021, 299(1): 145-152.
|
| [21] |
|
| [22] |
杨星,郝子晗,丰镇平. 考虑进口旋流的涡轮静叶流动传热的颗粒物沉积效应[J]. 西安交通大学学报,2021, 55(7): 61-70.
|
| [23] |
邵宏勋,谢俊,桂玉双,等. 基于微米级颗粒临界沉积/剥离标准的研究进展[J]. 化工进展,2023, 42(12): 6141-6156.
|
| [24] |
杨晓军,刘文博,胡英琦,等. 高压涡轮叶片颗粒物沉积特性数值模拟[J]. 推进技术,2022, 43(11): 169-180.
|
| [25] |
|
| [26] |
王辉,焦杨,辛文宇,等. 湿颗粒分离中的液桥力作用及临界分离初速度[J]. 大学物理,2015, 34(7): 44-48.
|
| [27] |
詹飞龙,丁国良,庄大伟,等. 析湿工况下翅片管式换热器表面粉尘沉积过程的数值模型[J]. 化工学报,2020, 71(5): 1986-1994, 2458.
|
| [28] |
|
| [29] |
李颖,钟茗秋,黄祥声,等. 湿热沿海海上风电机组环境适应性测试评价分析[J]. 环境技术,2020, 38(1): 50-56.
|
| [30] |
杨翔,费恒涛,李姿扬,等. 人工气候模拟海洋大气盐雾区的加速试验设计[J]. 科技资讯,2014, 12(27): 235-236.
|
| [31] |
曾菊尧. 关于我国沿海地区近地面大气中的盐雾及其分布[J]. 特殊电工,1982(4): 15-20.
|
| [32] |
|
/
| 〈 |
|
〉 |